不同熱處理溫度下鐵素體單一相在0.5mol/L 硫酸溶液中的極化曲線如圖5.62所示,從圖中可以看出,鐵素體單一相在0.5mol/L 硫酸溶液中的極化曲線形貌與2205雙相不(bu)銹鋼(gang)不同,雙相不(bu)銹鋼整體在0.5mol/L 硫酸溶液中的極化曲線陽極區具有明顯的活化鈍化區以及很寬電位范圍的鈍化區,而鐵素體單一相沒有活化鈍化區,且鈍化區比較窄。具體擬合數據如表5.20所列,腐蝕電位和自腐蝕電流隨固溶溫度的變化曲線如圖5.63所示。


結合圖5.63和表5.20分析可知,鐵素體單一相的自腐蝕電位隨固溶溫度的增大,后減小,當固溶溫度為1050℃時,Ecorr的值達到最大為0.304V;當固溶溫度達到1150℃后,Bm的值達到最小為-0.130V.自腐蝕電流的變化規律同自腐蝕電位相反,為先減小,后增大,于1050℃達到最小值2.67×10-8A/c㎡,于1150℃達到最大值6.42×10-7A/c㎡.結合自腐蝕電位和自腐蝕電流的變化趨勢可知,當固溶溫度為1050℃時,鐵素體單一相在0.5mol/L 硫酸溶液中耐蝕性能最佳,隨著固溶溫度的升高,其耐蝕性變差。這與雙相不銹鋼整體在0.5mol/L 硫酸溶液中的耐蝕規律相一致。產生以上現象的主要原因1050℃固溶后,鐵素體Cr元素和Mo元素含量最高,Cr元素是鈍化膜形成的要元素,并且可以提高鈍化膜的致密度和修復速度。有研究表明,金屬表面化膜的性質與Cr/Fe的值和金屬/氧的值有關,Cr/Fe、金屬/氧的比值越高,膜的耐蝕性能越好,而Cr元素含量提高會使Cr/Fe、金屬/氧比升高。Mo元素可以配合Cr元素提高材料的耐蝕性能。隨著溫度的升高,鐵素體含量的升高以及Cr和Mo含量的降低導致平均單位中Cr和Mo含量的降低,相當于Cr和Mo被不斷稀釋,因此,當固溶溫度達到1150℃后,鐵素體單一相的耐蝕性變差。
圖5.64為(wei)不(bu)同(tong)固(gu)(gu)溶溫度(du)(du)下2205 雙相(xiang)(xiang)不(bu)銹鋼(gang)(gang)奧氏體(ti)(ti)(ti)單(dan)(dan)一(yi)相(xiang)(xiang)在0.5mol/L 硫(liu)酸溶液(ye)中(zhong)的極化曲(qu)線,奧氏體(ti)(ti)(ti)單(dan)(dan)一(yi)相(xiang)(xiang)極化曲(qu)線形(xing)狀與鐵素體(ti)(ti)(ti)單(dan)(dan)一(yi)相(xiang)(xiang)相(xiang)(xiang)似(si),均沒有雙相(xiang)(xiang)不(bu)銹鋼(gang)(gang)整體(ti)(ti)(ti)在0.5mml/1.1,50,溶液(ye)中(zhong)出現的法化鈍化區以及很(hen)寬的純化區間。當固(gu)(gu)溶溫度(du)(du)較低時,剪氏體(ti)(ti)(ti)單(dan)(dan)一(yi)相(xiang)(xiang)極化曲(qu)線靠近圖的左上方,隨著固(gu)(gu)溶溫度(du)(du)的升高,曲(qu)線向右(you)下方移動(dong),其具(ju)體(ti)(ti)(ti)批合數據如表5.20折列,自腐(fu)蝕電位和自腐(fu)蝕電流隨溫度(du)(du)的變化曲(qu)線如圖5.65所示(shi)。


結合表5.21和圖5.65可(ke)知(zhi),奧氏體單(dan)一相自腐蝕電(dian)位隨固溶(rong)溫度的(de)升高(gao)呈現(xian)先增大(da)后減小的(de)趨勢,當固溶(rong)溫度為1050℃時,具有最大(da)值0.159V,隨著固溶(rong)溫度的(de)升高(gao),自腐蝕電(dian)位變為1100℃的(de)0.079V和1150℃時的(de)-0.056V,說(shuo)明1050℃奧氏體單(dan)一相在0.5mol/L 硫酸溶液中耐蝕傾向最好,隨著溫度的升高,耐蝕傾向變差。自腐蝕電流在固溶溫度較低時比較小,分別為1000℃的4.02×10-8A/c㎡,1050℃的3.78×10-8A/c㎡,1100℃的3.73×10-8A/c㎡,其值相差不多,當固溶溫度達到1150℃時,自腐蝕電流增加了一個數量級,其值為6.37×10~7A/c㎡.綜合自腐蝕電位和自腐蝕電流的變化趨勢可知,當固溶溫度較低時,奧氏體單一相在0.5mol/L硫酸溶液中的耐蝕性較好,當固溶溫度升高至1150℃后,其耐蝕性能變差。奧氏體單一相在0.5mol/L 硫酸溶(rong)液中耐(nai)蝕性變化(hua)趨勢與在3.5%NaCl溶(rong)液中相(xiang)同。當固溶(rong)溫(wen)度升高時,Cr、Mo元(yuan)素(su)在奧氏體中的含量(liang)變化(hua)不大,但是(shi)Ni元(yuan)素(su)含量(liang)的下降,導(dao)致奧氏體單(dan)一相(xiang)耐(nai)蝕性變差。
圖5.66為不(bu)同固(gu)(gu)溶(rong)(rong)(rong)溫度下(xia)素體(ti)單(dan)一(yi)(yi)相與(yu)奧氏(shi)體(ti)單(dan)一(yi)(yi)相在(zai)硫酸(suan)溶(rong)(rong)(rong)液(ye)中(zhong)(zhong)(zhong)耐蝕(shi)(shi)(shi)(shi)性能(neng)的(de)(de)(de)(de)對(dui)比圖,從圖中(zhong)(zhong)(zhong)可以看出,固(gu)(gu)溶(rong)(rong)(rong)溫度較低(di)時(shi),鐵(tie)素體(ti)單(dan)一(yi)(yi)相自腐(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)電(dian)位(wei)較高。隨著溫度的(de)(de)(de)(de)升高,兩(liang)相自腐(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)電(dian)位(wei)差值變小,當固(gu)(gu)溶(rong)(rong)(rong)溫度為1150℃時(shi),奧氏(shi)體(ti)單(dan)一(yi)(yi)相自腐(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)電(dian)位(wei)較鐵(tie)素體(ti)單(dan)一(yi)(yi)相略(lve)微提高。比較不(bu)同固(gu)(gu)溶(rong)(rong)(rong)溫度下(xia)的(de)(de)(de)(de)兩(liang)相的(de)(de)(de)(de)自腐(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)電(dian)流可以發現,奧氏(shi)體(ti)單(dan)一(yi)(yi)相與(yu)鐵(tie)素體(ti)單(dan)一(yi)(yi)相的(de)(de)(de)(de)自腐(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)電(dian)流在(zai)不(bu)同固(gu)(gu)溶(rong)(rong)(rong)溫度下(xia)都相差很小。相對(dui)在(zai)3.5%NaCl溶(rong)(rong)(rong)液(ye),鐵(tie)素體(ti)單(dan)一(yi)(yi)相在(zai)0.5mol 硫酸(suan)溶(rong)(rong)(rong)液(ye)中(zhong)(zhong)(zhong)的(de)(de)(de)(de)腐(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)速(su)率有了很明顯的(de)(de)(de)(de)增加,這說(shuo)明在(zai)0.5mol 硫酸(suan)溶(rong)(rong)(rong)液(ye)中(zhong)(zhong)(zhong),鐵(tie)素體(ti)單(dan)一(yi)(yi)相與(yu)奧氏(shi)體(ti)單(dan)一(yi)(yi)相都表(biao)現出了較大的(de)(de)(de)(de)腐(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)活性,在(zai)宏(hong)觀上表(biao)現出均勻腐(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)的(de)(de)(de)(de)性質(zhi),其(qi)在(zai)0.5mol/L 硫酸(suan)溶(rong)(rong)(rong)液(ye)中(zhong)(zhong)(zhong)的(de)(de)(de)(de)優先(xian)腐(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)行(xing)為不(bu)明顯,這與(yu)其(qi)在(zai)3.5%NaCl溶(rong)(rong)(rong)液(ye)中(zhong)(zhong)(zhong)的(de)(de)(de)(de)優先(xian)腐(fu)(fu)(fu)(fu)蝕(shi)(shi)(shi)(shi)行(xing)為明顯不(bu)同。


