一、凝固收縮
凝(ning)固(gu)過程中(zhong),液(ye)相向固(gu)相轉變發(fa)生的(de)體收縮,加大了氮氣孔(kong)形成的(de)敏(min)感(gan)性,這(zhe)主要(yao)是因為凝(ning)固(gu)收縮促進了液(ye)相穿(chuan)過枝晶網狀(zhuang)結構或其(qi)他補(bu)縮通(tong)道向疏(shu)松流動的(de)補(bu)縮行為,導(dao)致了疏(shu)松與(yu)其(qi)附近區域(yu)之間產生了新(xin)的(de)壓力梯度,梯度方向為補(bu)縮流動的(de)反方向,即VP。根據質量守恒和達西定律可(ke)知:

以(yi)21.5Cr5Mn1.5Ni0.25N含氮雙相(xiang)鋼(gang)D1鑄錠為(wei)(wei)例,心部處疏(shu)松和(he)氣(qi)(qi)孔(kong)(kong)共存的形貌如圖2-63所示。由疏(shu)松導致的不(bu)規(gui)則(ze)(ze)(ze)氣(qi)(qi)孔(kong)(kong)與規(gui)則(ze)(ze)(ze)氣(qi)(qi)孔(kong)(kong)之間最大的區(qu)別在(zai)于(yu),不(bu)規(gui)則(ze)(ze)(ze)氣(qi)(qi)孔(kong)(kong)內壁凹凸不(bu)平,而規(gui)則(ze)(ze)(ze)氣(qi)(qi)孔(kong)(kong)內壁光滑。規(gui)則(ze)(ze)(ze)氣(qi)(qi)孔(kong)(kong)、不(bu)規(gui)則(ze)(ze)(ze)氣(qi)(qi)孔(kong)(kong)以(yi)及疏(shu)松縮孔(kong)(kong)依次沿(yan)凝(ning)固方向分布(bu),規(gui)則(ze)(ze)(ze)氣(qi)(qi)泡初(chu)始(shi)形成位置為(wei)(wei)單一奧氏(shi)體(ti)(ti)相(xiang)。隨(sui)著凝(ning)固的進(jin)行,在(zai)規(gui)則(ze)(ze)(ze)氣(qi)(qi)孔(kong)(kong)完全(quan)閉合之前,由于(yu)疏(shu)松引起的鋼(gang)液靜壓(ya)力Pm降低,促(cu)進(jin)了(le)氣(qi)(qi)孔(kong)(kong)的進(jin)一步生長,不(bu)規(gui)則(ze)(ze)(ze)氣(qi)(qi)孔(kong)(kong)開始(shi)形成和(he)長大。眾所周知(zhi),疏(shu)松是凝(ning)固體(ti)(ti)積縮無法得到枝(zhi)晶(jing)間液體(ti)(ti)補(bu)縮所導致的,那么不(bu)規(gui)則(ze)(ze)(ze)氣(qi)(qi)孔(kong)(kong)周圍的相(xiang)分布(bu)和(he)基體(ti)(ti)完全(quan)相(xiang)同,即奧氏(shi)體(ti)(ti)相(xiang)和(he)鐵素(su)體(ti)(ti)相(xiang)交替分布(bu),與規(gui)則(ze)(ze)(ze)氣(qi)(qi)孔(kong)(kong)周圍相(xiang)分布(bu)存在(zai)差異(yi)。

此(ci)外,對柱狀(zhuang)鑄(zhu)錠而(er)言,凝固末期由于發達枝(zhi)晶網狀(zhuang)結構的形(xing)成(cheng),凝固收縮得(de)不到液相(xiang)補(bu)充的位置(zhi)(zhi)往(wang)往(wang)處于中(zhong)心(xin)(xin)軸線(xian)位置(zhi)(zhi)附(fu)近(jin),那么D1~D4鑄(zhu)錠中(zhong)不規(gui)則(ze)氣(qi)孔大(da)多(duo)數分布在鑄(zhu)錠中(zhong)心(xin)(xin)軸線(xian)位置(zhi)(zhi)處,如圖(tu)2-50所示。不受疏松影響的規(gui)則(ze)氣(qi)孔形(xing)狀(zhuang)近(jin)似橢圓形(xing),且多(duo)數分布在靠(kao)近(jin)鑄(zhu)錠邊部的位置(zhi)(zhi)。此(ci)外,鋼液靜壓力(li)Pm隨著鑄(zhu)錠高度的增加而(er)減小,因(yin)此(ci)氣(qi)孔的數量和尺寸均(jun)隨鑄(zhu)錠高度增加而(er)大(da)體呈(cheng)現(xian)出增加的趨(qu)勢(圖(tu)2-50)。
二、主要(yao)合金元素和凝固壓(ya)力
1. 氮
在(zai)鑄(zhu)(zhu)錠(ding)凝(ning)固過程(cheng)中(zhong),隨著(zhu)初始氮(dan)(dan)質(zhi)(zhi)量分(fen)(fen)數的(de)增(zeng)(zeng)加(jia)(jia)(jia),氮(dan)(dan)在(zai)枝晶間殘余液相(xiang)中(zhong)的(de)富集程(cheng)度更加(jia)(jia)(jia)嚴重,[%N]1iq值(zhi)更大。以21.5Cr5Mn1.5Ni0.25N含氮(dan)(dan)雙相(xiang)鋼為例,結合式(2-123)可得,Pg,max也隨之增(zeng)(zeng)加(jia)(jia)(jia)。當初始氮(dan)(dan)質(zhi)(zhi)量分(fen)(fen)數從0.25%(D2)增(zeng)(zeng)加(jia)(jia)(jia)至(zhi)0.29%(D4)時(shi),對平衡(heng)凝(ning)固和Scheil凝(ning)固而言,[%N]ig的(de)最大值(zhi)分(fen)(fen)別為1.03%和1.51%(圖2-51),Pg,max的(de)增(zeng)(zeng)量分(fen)(fen)別為0.07MPa和0.18MPa(如圖2-64所示)。由(you)氣(qi)泡形成時(shi)的(de)壓力關系可知(zhi),P.,max的(de)增(zeng)(zeng)加(jia)(jia)(jia)意味著(zhu)液相(xiang)中(zhong)氮(dan)(dan)氣(qi)泡形成的(de)概率增(zeng)(zeng)大,表明增(zeng)(zeng)加(jia)(jia)(jia)初始氮(dan)(dan)質(zhi)(zhi)量分(fen)(fen)數大幅度提高了鑄(zhu)(zhu)錠(ding)內出(chu)現氮(dan)(dan)氣(qi)孔(kong)缺(que)陷的(de)可能性。
為了驗證理論計算結果(guo),對D2、D3和(he)(he)D4鑄(zhu)錠內氮(dan)(dan)氣(qi)孔的分(fen)(fen)布狀態(tai)進行實驗分(fen)(fen)析,D2、D3和(he)(he)D4凝固(gu)壓力(li)均(jun)為0.1MPa,其氮(dan)(dan)質量(liang)分(fen)(fen)數(shu)分(fen)(fen)別為0.25%、0.26%和(he)(he)0.29%,氣(qi)孔形成高度(du)從150mm降至40mm,如圖2-64所示。因此,Pg,max隨著(zhu)初始(shi)氮(dan)(dan)質量(liang)分(fen)(fen)數(shu)的增(zeng)加而增(zeng)大,液相中氮(dan)(dan)氣(qi)泡(pao)形成難度(du)減小,氮(dan)(dan)氣(qi)孔易于在鑄(zhu)錠內形成。

2. 錳
研究(jiu)發現[19,25,95],部(bu)分合(he)(he)(he)金(jin)元(yuan)(yuan)素(su)(su)(如(ru)(ru)錳(meng)和(he)鉻)能夠(gou)提(ti)高液(ye)(ye)相(xiang)(xiang)(xiang)(xiang)中(zhong)(zhong)(zhong)(zhong)氮(dan)(dan)的(de)溶(rong)解度,減小(xiao)(xiao)Aso值(zhi);其中(zhong)(zhong)(zhong)(zhong)錳(meng)等合(he)(he)(he)金(jin)元(yuan)(yuan)素(su)(su)在凝(ning)固過程中(zhong)(zhong)(zhong)(zhong)還能促(cu)進富(fu)氮(dan)(dan)相(xiang)(xiang)(xiang)(xiang)的(de)形(xing)(xing)成(cheng)(cheng),減小(xiao)(xiao)枝(zhi)晶間液(ye)(ye)相(xiang)(xiang)(xiang)(xiang)中(zhong)(zhong)(zhong)(zhong)氮(dan)(dan)的(de)富(fu)集(ji),緩(huan)解氮(dan)(dan)偏析,降低Ase值(zhi)。如(ru)(ru)果合(he)(he)(he)金(jin)元(yuan)(yuan)素(su)(su)能夠(gou)減小(xiao)(xiao)Aso與Ase的(de)總和(he),那么(me)提(ti)高鋼中(zhong)(zhong)(zhong)(zhong)該合(he)(he)(he)金(jin)元(yuan)(yuan)素(su)(su)的(de)質(zhi)量(liang)分數有(you)助(zhu)于(yu)抑制氮(dan)(dan)氣(qi)泡在殘余液(ye)(ye)相(xiang)(xiang)(xiang)(xiang)中(zhong)(zhong)(zhong)(zhong)形(xing)(xing)成(cheng)(cheng)。合(he)(he)(he)金(jin)元(yuan)(yuan)素(su)(su)錳(meng)提(ti)高液(ye)(ye)相(xiang)(xiang)(xiang)(xiang)中(zhong)(zhong)(zhong)(zhong)氮(dan)(dan)質(zhi)量(liang)分數的(de)同時,還有(you)助(zhu)于(yu)富(fu)氮(dan)(dan)相(xiang)(xiang)(xiang)(xiang)(如(ru)(ru)奧(ao)氏(shi)體相(xiang)(xiang)(xiang)(xiang)γ和(he)hcp相(xiang)(xiang)(xiang)(xiang))在凝(ning)固過程中(zhong)(zhong)(zhong)(zhong)的(de)形(xing)(xing)成(cheng)(cheng)。以(yi)21.5Cr5Mn1.5Ni0.25N含氮(dan)(dan)雙相(xiang)(xiang)(xiang)(xiang)鋼D1鑄(zhu)錠(ding)為例,在平衡凝(ning)固和(he)Scheil凝(ning)固中(zhong)(zhong)(zhong)(zhong),增(zeng)加合(he)(he)(he)金(jin)元(yuan)(yuan)素(su)(su)錳(meng)均能同時降低Aso和(he)Ase的(de)值(zhi),如(ru)(ru)圖(tu)2-65所示(shi)(shi)。與此(ci)同時,結合(he)(he)(he)式(2-123),隨著合(he)(he)(he)金(jin)元(yuan)(yuan)素(su)(su)錳(meng)質(zhi)量(liang)分數增(zeng)加而大幅度減小(xiao)(xiao),如(ru)(ru)圖(tu)2-66所示(shi)(shi)。因(yin)此(ci)增(zeng)加鑄(zhu)錠(ding)中(zhong)(zhong)(zhong)(zhong)合(he)(he)(he)金(jin)元(yuan)(yuan)素(su)(su)錳(meng)的(de)質(zhi)量(liang)分數有(you)助(zhu)于(yu)抑制液(ye)(ye)相(xiang)(xiang)(xiang)(xiang)中(zhong)(zhong)(zhong)(zhong)氮(dan)(dan)氣(qi)泡的(de)形(xing)(xing)成(cheng)(cheng),減少(shao)或消除21.5Cr5Mn1.5Ni0.25N 含氮(dan)(dan)雙相(xiang)(xiang)(xiang)(xiang)鋼中(zhong)(zhong)(zhong)(zhong)氮(dan)(dan)氣(qi)孔缺陷,該結論與Young等報道(dao)的(de)一(yi)致(zhi)。



3. 鉻
與合(he)金(jin)(jin)元(yuan)(yuan)(yuan)(yuan)素(su)(su)錳相(xiang)比,合(he)金(jin)(jin)元(yuan)(yuan)(yuan)(yuan)素(su)(su)鉻(ge)(ge)對氮(dan)(dan)氣孔形(xing)成(cheng)的(de)(de)(de)影響相(xiang)對復雜。一方面(mian)(mian),增(zeng)(zeng)加(jia)合(he)金(jin)(jin)元(yuan)(yuan)(yuan)(yuan)素(su)(su)鉻(ge)(ge)的(de)(de)(de)質(zhi)(zhi)(zhi)量(liang)分(fen)(fen)(fen)數(shu)(shu)能提高(gao)液(ye)相(xiang)中氮(dan)(dan)的(de)(de)(de)溶解度和促(cu)(cu)進富氮(dan)(dan)相(xiang)(hcp 相(xiang))在凝(ning)固(gu)過(guo)(guo)程中的(de)(de)(de)形(xing)成(cheng)(圖2-67),減(jian)小(xiao)(xiao)(xiao)Aso的(de)(de)(de)值,有助于抑制(zhi)液(ye)相(xiang)中氮(dan)(dan)氣泡的(de)(de)(de)形(xing)成(cheng)。以21.5Cr5Mn1.5Ni0.25N 含(han)氮(dan)(dan)雙相(xiang)鋼D1鑄(zhu)錠(ding)(ding)為(wei)(wei)例,Aso隨(sui)鉻(ge)(ge)質(zhi)(zhi)(zhi)量(liang)分(fen)(fen)(fen)數(shu)(shu)的(de)(de)(de)變化規(gui)律,如圖2-68所(suo)(suo)(suo)示。另(ling)一方面(mian)(mian),鉻(ge)(ge)作(zuo)為(wei)(wei)鐵素(su)(su)體(ti)相(xiang)8形(xing)成(cheng)元(yuan)(yuan)(yuan)(yuan)素(su)(su),提高(gao)合(he)金(jin)(jin)元(yuan)(yuan)(yuan)(yuan)素(su)(su)鉻(ge)(ge)的(de)(de)(de)質(zhi)(zhi)(zhi)量(liang)分(fen)(fen)(fen)數(shu)(shu)有利(li)于貧氮(dan)(dan)鐵素(su)(su)體(ti)相(xiang)8的(de)(de)(de)形(xing)成(cheng)(圖2-67),從而加(jia)劇液(ye)相(xiang)中氮(dan)(dan)的(de)(de)(de)富集,增(zeng)(zeng)大(da)氮(dan)(dan)的(de)(de)(de)偏析(xi),增(zeng)(zeng)加(jia)Ase(如圖2-68所(suo)(suo)(suo)示),對液(ye)相(xiang)中氮(dan)(dan)氣泡的(de)(de)(de)形(xing)成(cheng)具(ju)有促(cu)(cu)進作(zuo)用。這種(zhong)矛盾在平(ping)衡凝(ning)固(gu)過(guo)(guo)程中較為(wei)(wei)突出,當合(he)金(jin)(jin)元(yuan)(yuan)(yuan)(yuan)素(su)(su)鉻(ge)(ge)的(de)(de)(de)質(zhi)(zhi)(zhi)量(liang)分(fen)(fen)(fen)數(shu)(shu)從15%增(zeng)(zeng)至21.5%時(shi),由于Ase的(de)(de)(de)增(zeng)(zeng)量(liang)大(da)于Aso的(de)(de)(de)減(jian)小(xiao)(xiao)(xiao)量(liang),Pg,max呈現(xian)(xian)增(zeng)(zeng)大(da)的(de)(de)(de)趨(qu)勢(shi),如圖2-69所(suo)(suo)(suo)示;當合(he)金(jin)(jin)元(yuan)(yuan)(yuan)(yuan)素(su)(su)鉻(ge)(ge)的(de)(de)(de)質(zhi)(zhi)(zhi)量(liang)分(fen)(fen)(fen)數(shu)(shu)進一步增(zeng)(zeng)加(jia)至25%時(shi),Ase和Aso分(fen)(fen)(fen)別增(zeng)(zeng)大(da)和減(jian)小(xiao)(xiao)(xiao),但與Ase相(xiang)比Aso的(de)(de)(de)變化量(liang)十分(fen)(fen)(fen)明顯,進而導致Pg出現(xian)(xian)減(jian)小(xiao)(xiao)(xiao)的(de)(de)(de)趨(qu)勢(shi)。然而,在Scheil凝(ning)固(gu)中,隨(sui)著合(he)金(jin)(jin)元(yuan)(yuan)(yuan)(yuan)素(su)(su)鉻(ge)(ge)質(zhi)(zhi)(zhi)量(liang)分(fen)(fen)(fen)數(shu)(shu)的(de)(de)(de)提高(gao),有助于Aso大(da)幅(fu)度降(jiang)低,Pg,max始(shi)終保(bao)持單調遞減(jian)的(de)(de)(de)趨(qu)勢(shi),如圖2-69所(suo)(suo)(suo)示。總之,隨(sui)著合(he)金(jin)(jin)元(yuan)(yuan)(yuan)(yuan)素(su)(su)鉻(ge)(ge)質(zhi)(zhi)(zhi)量(liang)分(fen)(fen)(fen)數(shu)(shu)的(de)(de)(de)增(zeng)(zeng)加(jia),Aso與Ase之和的(de)(de)(de)變化非單調,合(he)金(jin)(jin)元(yuan)(yuan)(yuan)(yuan)素(su)(su)鉻(ge)(ge)對液(ye)相(xiang)中氮(dan)(dan)氣泡形(xing)成(cheng)的(de)(de)(de)影響呈現(xian)(xian)出雙面(mian)(mian)性(xing),同樣對鑄(zhu)錠(ding)(ding)內(nei)氣孔的(de)(de)(de)形(xing)成(cheng)也(ye)具(ju)有雙面(mian)(mian)性(xing)。


4. 凝(ning)固壓力
以21.5Cr5Mn1.5Ni0.25N 含氮雙相鋼D1鑄錠為例,D1、D3和D5鑄錠的凝固壓力分別為0.04MPa、0.10MPa和0.13MPa,氮的質量分數分別為0.23%、0.26%和0.28%.隨著氮質量分數從0.23%(D1)增加至0.28%(D5)時,P.g,max在平衡凝固中從0.634MPa 增加至0.753MPa,在Scheil凝固中從0.618MPa增至0.707MPa,如圖2-70(a)所示。在不考慮凝固壓力對氮氣孔形成的影響時,基于初始氮質量分數對氮氣孔形成的影響規律,與D1和D3相比,D5鑄錠內氮氣孔缺陷最為嚴重。然而,當凝固壓力從0.04MPa(D1)增加至0.13MPa(D5)時,氮氣孔形成高度從0mm增加至260mm[圖2-70(b)],同時氮氣孔數量也明顯減少甚至消失。因此,增加凝固壓力是抑制和消除鑄錠中氮氣孔缺陷十分有效的手段之一。


然而,壓(ya)(ya)(ya)力過高將會加(jia)速(su)設備(bei)損耗(hao),提高生產(chan)成(cheng)本且(qie)易引發(fa)生產(chan)事故,影響(xiang)生產(chan)的(de)安全(quan)和順(shun)利(li)(li)運行。因此(ci),利(li)(li)用(yong)加(jia)壓(ya)(ya)(ya)冶金技術制(zhi)備(bei)高氮奧氏體不銹鋼(gang)過程中,需要合理(li)地控制(zhi)壓(ya)(ya)(ya)力。利(li)(li)用(yong)加(jia)壓(ya)(ya)(ya)感應爐制(zhi)備(bei)高氮奧氏體不銹鋼(gang)時,壓(ya)(ya)(ya)力P6可用(yong)以下公(gong)式(shi)確定:


