受鑄(zhu)(zhu)錠(ding)凝固收縮和鑄(zhu)(zhu)型受熱膨(peng)脹(zhang)的影響,鑄(zhu)(zhu)錠(ding)和鑄(zhu)(zhu)型接(jie)觸隨之發生(sheng)變(bian)化,即(ji)形成氣隙,如(ru)下(xia)圖(tu)所示。當鑄(zhu)(zhu)錠(ding)和鑄(zhu)(zhu)型間氣隙形成以后,鑄(zhu)(zhu)錠(ding)向(xiang)鑄(zhu)(zhu)型的傳(chuan)(chuan)熱方(fang)式(shi)不只(zhi)是(shi)簡(jian)單的傳(chuan)(chuan)導傳(chuan)(chuan)熱,同(tong)時存在小區域的氣體導熱和輻射傳(chuan)(chuan)熱,導致鑄(zhu)(zhu)錠(ding)-鑄(zhu)(zhu)型界面(mian)(mian)熱阻(1/hz)發生(sheng)非線性(xing)變(bian)化。界面(mian)(mian)熱量傳(chuan)(chuan)輸可分為(wei)如(ru)下(xia)三個階段(duan)。


  階(jie)段1: 在凝固初期,當(dang)表(biao)面溫度略(lve)低于鑄錠液相線(xian)溫度時(shi),在鑄錠外表(biao)面會(hui)形成(cheng)一(yi)定厚度的半固態(tai)殼;此時(shi),在液體靜壓力(li)和外界(jie)壓力(li)(如(ru)凝固壓力(li)和大氣壓等(deng))的作用(yong)下,鑄錠和鑄型界(jie)面處于完全接觸(chu)狀態(tai),如(ru)圖2-84(a)所示(shi),因而界(jie)面的固固接觸(chu)熱量傳(chuan)輸方式(shi)在界(jie)面傳(chuan)熱過程中起主導(dao)作用(yong), 此界(jie)面宏觀(guan)平均換熱系(xi)數(shu)hz1可表(biao)示(shi)為(wei)


   h21=a+b·(P1+P3)  (2-167)


   式中,a和b為(wei)常(chang)量;Ph為(wei)液體靜壓(ya)力;Ps為(wei)外界壓(ya)力。


   階(jie)段2: 在(zai)給定外界(jie)(jie)(jie)壓力和(he)液體靜壓力條件下,半(ban)(ban)固(gu)(gu)(gu)(gu)(gu)態(tai)殼(ke)的(de)(de)強度存(cun)在(zai)一個臨界(jie)(jie)(jie)值(zhi)σm;隨(sui)著凝固(gu)(gu)(gu)(gu)(gu)過程的(de)(de)進行,半(ban)(ban)固(gu)(gu)(gu)(gu)(gu)態(tai)殼(ke)的(de)(de)強度不斷增大(da);當強度大(da)于臨界(jie)(jie)(jie)值(zhi)時,半(ban)(ban)固(gu)(gu)(gu)(gu)(gu)態(tai)殼(ke)定型;隨(sui)后鑄錠半(ban)(ban)固(gu)(gu)(gu)(gu)(gu)態(tai)殼(ke)逐(zhu)漸(jian)與鑄型分離(li),固(gu)(gu)(gu)(gu)(gu)固(gu)(gu)(gu)(gu)(gu)接觸(chu)(chu)(chu)積逐(zhu)漸(jian)減小,氣(qi)隙(xi)在(zai)界(jie)(jie)(jie)面(mian)(mian)(mian)某些位置形成(cheng)且(qie)其尺寸逐(zhu)漸(jian)增大(da),導致(zhi)鑄錠和(he)鑄型界(jie)(jie)(jie)面(mian)(mian)(mian)處于半(ban)(ban)完全接觸(chu)(chu)(chu)狀態(tai),如(ru)圖2-84(b)所示。在(zai)此階(jie)段,氣(qi)隙(xi)的(de)(de)尺寸主要受由(you)液相變固(gu)(gu)(gu)(gu)(gu)相發生的(de)(de)凝固(gu)(gu)(gu)(gu)(gu)收縮(suo)影響。盡管界(jie)(jie)(jie)面(mian)(mian)(mian)還存(cun)在(zai)部分固(gu)(gu)(gu)(gu)(gu)固(gu)(gu)(gu)(gu)(gu)接觸(chu)(chu)(chu),但(dan)界(jie)(jie)(jie)面(mian)(mian)(mian)熱(re)(re)(re)阻隨(sui)著凝固(gu)(gu)(gu)(gu)(gu)的(de)(de)進行不斷增大(da),由(you)于鑄錠和(he)鑄型界(jie)(jie)(jie)面(mian)(mian)(mian)接觸(chu)(chu)(chu)方式的(de)(de)變化,界(jie)(jie)(jie)面(mian)(mian)(mian)熱(re)(re)(re)量傳(chuan)輸(shu)主要由(you)固(gu)(gu)(gu)(gu)(gu)固(gu)(gu)(gu)(gu)(gu)接觸(chu)(chu)(chu)傳(chuan)熱(re)(re)(re)、輻射換熱(re)(re)(re)以及氣(qi)相導熱(re)(re)(re)傳(chuan)熱(re)(re)(re)三(san)分構成(cheng),其中,固(gu)(gu)(gu)(gu)(gu)固(gu)(gu)(gu)(gu)(gu)接觸(chu)(chu)(chu)傳(chuan)熱(re)(re)(re)仍然(ran)占(zhan)據界(jie)(jie)(jie)面(mian)(mian)(mian)熱(re)(re)(re)量傳(chuan)輸(shu)的(de)(de)主導地位。此階(jie)段界(jie)(jie)(jie)面(mian)(mian)(mian)宏觀(guan)平均換熱(re)(re)(re)系數hz2可表示為


84.jpg


 此外,隨著凝(ning)固(gu)(gu)(gu)的進行,鑄錠(ding)(ding)和鑄型界面(mian)(mian)上固(gu)(gu)(gu)固(gu)(gu)(gu)接觸面(mian)(mian)積逐(zhu)漸減(jian)小,因而階段(duan)1界面(mian)(mian)宏(hong)(hong)觀(guan)平均(jun)換(huan)(huan)熱(re)系數(shu)hz1最大,階段(duan)2界面(mian)(mian)宏(hong)(hong)觀(guan)平均(jun)換(huan)(huan)熱(re)系數(shu)hz2值(zhi)(zhi)次之,階段(duan)3界面(mian)(mian)宏(hong)(hong)觀(guan)平均(jun)換(huan)(huan)熱(re)系數(shu)hz3值(zhi)(zhi)最小,這與(yu)實際凝(ning)固(gu)(gu)(gu)過程中界面(mian)(mian)換(huan)(huan)熱(re)系數(shu)逐(zhu)漸減(jian)小的規律(lv)相(xiang)互印(yin)證。同時,在鑄錠(ding)(ding)自身重力的作用下,在鑄錠(ding)(ding)底部位置,界面(mian)(mian)半完全接觸狀態始(shi)終貫穿整個凝(ning)固(gu)(gu)(gu)過程,這與(yu)鑄錠(ding)(ding)頂端界面(mian)(mian)固(gu)(gu)(gu)固(gu)(gu)(gu)接觸完全消失有所不同,如圖(tu)2-84(d)所示。


  凝固(gu)壓力(li)在氣隙的(de)形成過程中扮演(yan)了十分重要(yao)的(de)角色。研究表明,增加凝固(gu)壓力(li)(兆帕級(ji))具有(you)明顯的(de)強(qiang)化冷卻效果,但在界面熱量傳輸變化的(de)三個階段,加壓強(qiang)化冷卻的(de)程度(du)大有(you)不同。


 階(jie)段(duan)1:當壓力(li)(li)在(zai)幾兆(zhao)帕下變化時(shi),由于物性參數(如強度(du)、密度(du)和導熱(re)系(xi)(xi)數等)的變化量可以(yi)忽略(lve)不計(ji),壓力(li)(li)對(dui)鑄錠和鑄型界(jie)面完全接觸狀態影響(xiang)(xiang)較小(xiao),根據式(2-166)可知,壓力(li)(li)對(dui)界(jie)面宏觀(guan)平均換熱(re)系(xi)(xi)數的影響(xiang)(xiang)可以(yi)忽略(lve)不計(ji),因此增加壓力(li)(li)對(dui)階(jie)段(duan)1的界(jie)面換熱(re)影響(xiang)(xiang)很小(xiao)。


  階段2:在此階段,鑄錠(ding)和鑄型(xing)界面非完全接觸(chu)狀態主(zhu)要由(you)凝固收縮控制。


  隨著壓(ya)(ya)力的(de)(de)(de)增加(jia)(jia),半固(gu)(gu)態(tai)殼(ke)抵抗(kang)變形(xing)所(suo)需臨界(jie)(jie)強(qiang)度增大(da),因而(er)加(jia)(jia)壓(ya)(ya)能夠抑制界(jie)(jie)面(mian)非完全接(jie)觸(chu)(chu)狀(zhuang)(zhuang)態(tai)的(de)(de)(de)形(xing)成(cheng),有助于將(jiang)界(jie)(jie)面(mian)在整個凝固(gu)(gu)過(guo)程(cheng)中實現保持固(gu)(gu)固(gu)(gu)接(jie)觸(chu)(chu)的(de)(de)(de)狀(zhuang)(zhuang)態(tai)。例如,隨著壓(ya)(ya)力的(de)(de)(de)增加(jia)(jia),H13表面(mian)上(shang)的(de)(de)(de)坑變得淺平(ping),且數(shu)(shu)量逐(zhu)漸(jian)減少,意(yi)味著鑄錠(ding)表面(mian)越來越光(guang)滑,粗糙度減小,鑄錠(ding)鑄型界(jie)(jie)面(mian)處(chu)的(de)(de)(de)固(gu)(gu)固(gu)(gu)接(jie)觸(chu)(chu)面(mian)積增大(da)。根據式(shi)(2-168)可(ke)知(zhi),界(jie)(jie)面(mian)宏觀平(ping)均傳熱系數(shu)(shu)與壓(ya)(ya)力趨(qu)于正比關系,加(jia)(jia)壓(ya)(ya)能夠顯(xian)著提升此(ci)階段界(jie)(jie)面(mian)宏觀平(ping)均換熱系數(shu)(shu)。因此(ci),增加(jia)(jia)壓(ya)(ya)力能夠強(qiang)化(hua)鑄錠(ding)鑄型間界(jie)(jie)面(mian)固(gu)(gu)固(gu)(gu)接(jie)觸(chu)(chu)狀(zhuang)(zhuang)態(tai),抑制由凝固(gu)(gu)收縮導(dao)致界(jie)(jie)面(mian)氣隙的(de)(de)(de)形(xing)成(cheng),加(jia)(jia)快(kuai)鑄錠(ding)鑄型界(jie)(jie)面(mian)傳遞,強(qiang)化(hua)冷卻(que)效果明顯(xian)。


  階(jie)段3:界(jie)面(mian)(mian)(mian)氣(qi)(qi)(qi)隙(xi)(xi)(xi)的(de)(de)長(chang)大主(zhu)(zhu)要(yao)受(shou)控于(yu)(yu)固態收縮(suo)。隨著(zhu)界(jie)面(mian)(mian)(mian)氣(qi)(qi)(qi)隙(xi)(xi)(xi)尺寸的(de)(de)變大,外界(jie)逐(zhu)步與(yu)界(jie)面(mian)(mian)(mian)氣(qi)(qi)(qi)隙(xi)(xi)(xi)連通,在(zai)壓(ya)力(li)的(de)(de)作用下(xia),氣(qi)(qi)(qi)體(ti)(ti)逐(zhu)漸進(jin)(jin)入界(jie)面(mian)(mian)(mian)氣(qi)(qi)(qi)隙(xi)(xi)(xi)內,進(jin)(jin)而導致界(jie)面(mian)(mian)(mian)氣(qi)(qi)(qi)隙(xi)(xi)(xi)與(yu)外界(jie)之間的(de)(de)壓(ya)差趨于(yu)(yu)零,壓(ya)力(li)對界(jie)面(mian)(mian)(mian)氣(qi)(qi)(qi)隙(xi)(xi)(xi)的(de)(de)影響逐(zhu)漸消失。此(ci)階(jie)段,氣(qi)(qi)(qi)體(ti)(ti)導熱(re)(re)(re)換(huan)熱(re)(re)(re)與(yu)輻射換(huan)熱(re)(re)(re)為(wei)界(jie)面(mian)(mian)(mian)換(huan)熱(re)(re)(re)的(de)(de)主(zhu)(zhu)要(yao)方式(shi)。其中氣(qi)(qi)(qi)體(ti)(ti)導熱(re)(re)(re)換(huan)熱(re)(re)(re)系數(hc,g)主(zhu)(zhu)要(yao)由(you)氣(qi)(qi)(qi)隙(xi)(xi)(xi)內氣(qi)(qi)(qi)體(ti)(ti)導熱(re)(re)(re)系數(kgap)和界(jie)面(mian)(mian)(mian)氣(qi)(qi)(qi)隙(xi)(xi)(xi)尺寸(wgap)決定,作為(wei)計算氣(qi)(qi)(qi)體(ti)(ti)導熱(re)(re)(re)換(huan)熱(re)(re)(re)系數的(de)(de)重(zhong)要(yao)參數,在(zai)給定壓(ya)力(li)下(xia)氣(qi)(qi)(qi)體(ti)(ti)導熱(re)(re)(re)系數(kgap)可由(you)下(xia)列公(gong)式(shi)進(jin)(jin)行計算:


式 170.jpg



  綜上所(suo)述,在(zai)(zai)通過氣(qi)體維(wei)持壓(ya)力的(de)加壓(ya)條件下(xia),壓(ya)力對界(jie)面換熱(re)系(xi)數的(de)影響(xiang)主要(yao)集中在(zai)(zai)界(jie)面氣(qi)隙形(xing)成的(de)第二階段,即在(zai)(zai)鑄(zhu)錠殼凝固(gu)收(shou)縮(suo)階段加壓(ya)通過增(zeng)大鑄(zhu)錠殼抵抗變(bian)形(xing)所(suo)需臨界(jie)強度(du)從而改善界(jie)面換熱(re),起到強化冷卻的(de)作用(yong)。


  以H13在0.1MPa、1MPa和(he)2MPa壓(ya)力(li)下凝固(gu)為(wei)例,其(qi)(qi)凝固(gu)壓(ya)力(li)通過(guo)充入氬氣(qi)獲(huo)得。為(wei)了(le)分(fen)析加壓(ya)對界面氣(qi)隙尺寸和(he)換熱(re)(re)方(fang)式的(de)影響規律,采用埋設熱(re)(re)電(dian)偶(ou)以及位移(yi)傳感(gan)器實驗,同(tong)時測(ce)(ce)量(liang)(liang)凝固(gu)過(guo)程中(zhong)(zhong)鑄(zhu)錠和(he)鑄(zhu)型(xing)(xing)溫(wen)度變(bian)(bian)化(hua)(hua)(hua)曲線以及其(qi)(qi)位移(yi)變(bian)(bian)化(hua)(hua)(hua)曲線,其(qi)(qi)中(zhong)(zhong),1#和(he)2#熱(re)(re)電(dian)偶(ou)分(fen)別測(ce)(ce)量(liang)(liang)離(li)鑄(zhu)錠外表面10mm和(he)15mm位置(zhi)處(chu)(chu)鑄(zhu)錠溫(wen)度變(bian)(bian)化(hua)(hua)(hua)曲線;3#和(he)4#熱(re)(re)電(dian)偶(ou)分(fen)別測(ce)(ce)量(liang)(liang)鑄(zhu)型(xing)(xing)內表面5mm和(he)10mm位置(zhi)處(chu)(chu)鑄(zhu)型(xing)(xing)的(de)溫(wen)度變(bian)(bian)化(hua)(hua)(hua)曲線;位移(yi)傳感(gan)器LVDT1和(he)LVDT2的(de)探頭位置(zhi)離(li)鑄(zhu)型(xing)(xing)內表面徑(jing)向距離(li)均為(wei)5mm,分(fen)別插(cha)入鑄(zhu)錠和(he)鑄(zhu)型(xing)(xing)中(zhong)(zhong)測(ce)(ce)量(liang)(liang)凝固(gu)過(guo)程中(zhong)(zhong)其(qi)(qi)位移(yi)變(bian)(bian)化(hua)(hua)(hua)曲線。測(ce)(ce)量(liang)(liang)溫(wen)度和(he)位移(yi)變(bian)(bian)化(hua)(hua)(hua)曲線的(de)裝置(zhi)如圖2-85所示。


85.jpg



  溫(wen)度測量曲線如(ru)圖2-86所示,對于鑄錠(ding)溫(wen)度測量曲線,存在“陡升(sheng)”和“振蕩”區(qu)域,這(zhe)主要由熱(re)電偶(ou)預(yu)熱(re)和澆注引(yin)起鋼液(ye)湍(tuan)流分別造成。隨著凝(ning)固(gu)過程的(de)進行,鑄型(xing)溫(wen)度升(sheng)高,鑄錠(ding)溫(wen)度不斷降低。


86.jpg


  因(yin)鑄(zhu)(zhu)(zhu)(zhu)型(xing)(xing)(xing)內表(biao)面和鑄(zhu)(zhu)(zhu)(zhu)錠(ding)(ding)(ding)外表(biao)面溫(wen)度(du)幾(ji)乎難(nan)以(yi)通過(guo)實驗進(jin)行準確測量,因(yin)而(er)可通過(guo)數值(zhi)計算(suan)的方式獲(huo)得(de),即以(yi)測量的鑄(zhu)(zhu)(zhu)(zhu)錠(ding)(ding)(ding)和鑄(zhu)(zhu)(zhu)(zhu)型(xing)(xing)(xing)溫(wen)度(du)變化(hua)曲線(xian)作(zuo)為輸(shu)入(ru)量,采用Beck 非線(xian)性求解法,計算(suan)鑄(zhu)(zhu)(zhu)(zhu)型(xing)(xing)(xing)內表(biao)面(Tw,i)和鑄(zhu)(zhu)(zhu)(zhu)錠(ding)(ding)(ding)外表(biao)面溫(wen)度(du)(Twm),由(you)于鑄(zhu)(zhu)(zhu)(zhu)錠(ding)(ding)(ding)和鑄(zhu)(zhu)(zhu)(zhu)型(xing)(xing)(xing)表(biao)面非鏡面,有一(yi)定粗糙(cao)度(du),因(yin)而(er)計算(suan)所得(de)鑄(zhu)(zhu)(zhu)(zhu)型(xing)(xing)(xing)內表(biao)面(Tw,i)和鑄(zhu)(zhu)(zhu)(zhu)錠(ding)(ding)(ding)外表(biao)面溫(wen)度(du)(Tw,m)均(jun)為宏觀平(ping)均(jun)表(biao)面溫(wen)度(du),計算(suan)結果如圖2-87所示。當壓力一(yi)定時,在鑄(zhu)(zhu)(zhu)(zhu)錠(ding)(ding)(ding)鑄(zhu)(zhu)(zhu)(zhu)型(xing)(xing)(xing)界面換熱以(yi)及鑄(zhu)(zhu)(zhu)(zhu)型(xing)(xing)(xing)外表(biao)面散(san)熱的影響下(xia),鑄(zhu)(zhu)(zhu)(zhu)錠(ding)(ding)(ding)外表(biao)面溫(wen)度(du)(Tw,i)在整個凝(ning)固(gu)過(guo)程中持續(xu)降低(di)(di),鑄(zhu)(zhu)(zhu)(zhu)型(xing)(xing)(xing)內表(biao)面(Tw,m)先增加(jia)而(er)后逐漸降低(di)(di)。隨著壓力從(cong)0.1MPa增加(jia)至2MPa,鑄(zhu)(zhu)(zhu)(zhu)錠(ding)(ding)(ding)外表(biao)面降溫(wen)速率和鑄(zhu)(zhu)(zhu)(zhu)型(xing)(xing)(xing)內表(biao)面升溫(wen)速率明(ming)顯(xian)加(jia)快,表(biao)明(ming)加(jia)壓對(dui)鑄(zhu)(zhu)(zhu)(zhu)錠(ding)(ding)(ding)和鑄(zhu)(zhu)(zhu)(zhu)型(xing)(xing)(xing)界面間(jian)換熱速率影響顯(xian)著。


87.jpg


  當壓力一(yi)定時(shi),界(jie)面(mian)氣(qi)(qi)隙(xi)(xi)(xi)寬(kuan)(kuan)(kuan)度(du)(du)隨(sui)(sui)(sui)時(shi)間的(de)(de)變(bian)化(hua)(hua)關(guan)(guan)系(xi)可(ke)通過凝固(gu)過程中(zhong)(zhong)鑄(zhu)錠和(he)鑄(zhu)型(xing)(xing)位(wei)移(yi)(yi)變(bian)化(hua)(hua)曲線(xian)獲(huo)得(de)。基于位(wei)移(yi)(yi)傳(chuan)感器(qi)的(de)(de)位(wei)移(yi)(yi)測(ce)(ce)量(liang)結果,所(suo)(suo)得(de)界(jie)面(mian)氣(qi)(qi)隙(xi)(xi)(xi)寬(kuan)(kuan)(kuan)度(du)(du)隨(sui)(sui)(sui)時(shi)間的(de)(de)變(bian)化(hua)(hua)關(guan)(guan)系(xi)如圖2-88(a)所(suo)(suo)示,在(zai)0.1MPa、1MPa和(he)2MPa下,界(jie)面(mian)氣(qi)(qi)隙(xi)(xi)(xi)寬(kuan)(kuan)(kuan)度(du)(du)隨(sui)(sui)(sui)時(shi)間變(bian)化(hua)(hua)規律基本相(xiang)似。以2MPa為例(li),在(zai)凝固(gu)初期(qi),鑄(zhu)錠、鑄(zhu)型(xing)(xing)和(he)位(wei)移(yi)(yi)傳(chuan)感器(qi)之間存在(zai)巨大(da)(da)溫差(cha),使得(de)位(wei)移(yi)(yi)傳(chuan)感器(qi)附近的(de)(de)鋼液迅(xun)速凝固(gu),以至于無法測(ce)(ce)量(liang)階(jie)段2 中(zhong)(zhong)凝固(gu)收(shou)縮導(dao)(dao)致(zhi)的(de)(de)氣(qi)(qi)隙(xi)(xi)(xi)寬(kuan)(kuan)(kuan)度(du)(du);同時(shi),鑄(zhu)錠和(he)鑄(zhu)型(xing)(xing)初期(qi)溫差(cha)巨大(da)(da),加(jia)速了鑄(zhu)型(xing)(xing)升溫膨脹和(he)鑄(zhu)錠冷(leng)卻收(shou)縮,因(yin)而在(zai)界(jie)面(mian)氣(qi)(qi)隙(xi)(xi)(xi)尺(chi)寸(cun)(cun)隨(sui)(sui)(sui)時(shi)間變(bian)化(hua)(hua)曲線(xian)前(qian)段不(bu)存氣(qi)(qi)隙(xi)(xi)(xi)尺(chi)寸(cun)(cun)緩(huan)慢增(zeng)長部(bu)分(fen)(fen),取而代之的(de)(de)是氣(qi)(qi)隙(xi)(xi)(xi)寬(kuan)(kuan)(kuan)度(du)(du)隨(sui)(sui)(sui)時(shi)間的(de)(de)陡升,而且氣(qi)(qi)隙(xi)(xi)(xi)寬(kuan)(kuan)(kuan)度(du)(du)的(de)(de)陡升很大(da)(da)程度(du)(du)由鑄(zhu)錠固(gu)態(tai)收(shou)縮所(suo)(suo)致(zhi)。因(yin)此,位(wei)移(yi)(yi)傳(chuan)感器(qi)所(suo)(suo)測(ce)(ce)氣(qi)(qi)隙(xi)(xi)(xi)尺(chi)寸(cun)(cun)僅包(bao)含了固(gu)態(tai)收(shou)縮導(dao)(dao)致(zhi)氣(qi)(qi)隙(xi)(xi)(xi)形(xing)成部(bu)分(fen)(fen),無因(yin)凝固(gu)收(shou)縮形(xing)成氣(qi)(qi)隙(xi)(xi)(xi)部(bu)分(fen)(fen)。在(zai)低壓下,增(zeng)加(jia)壓力對鑄(zhu)型(xing)(xing)和(he)鑄(zhu)錠的(de)(de)密度(du)(du)影(ying)(ying)響很小,幾乎可(ke)以忽略不(bu)計(ji),所(suo)(suo)以增(zeng)加(jia)壓力對鑄(zhu)型(xing)(xing)固(gu)態(tai)收(shou)縮導(dao)(dao)致(zhi)氣(qi)(qi)隙(xi)(xi)(xi)的(de)(de)尺(chi)寸(cun)(cun)影(ying)(ying)響非(fei)常小,所(suo)(suo)以在(zai)0.1MPa、1MPa和(he)2MPa下,界(jie)面(mian)氣(qi)(qi)隙(xi)(xi)(xi)尺(chi)寸(cun)(cun)傳(chuan)感器(qi)量(liang)的(de)(de)最(zui)大(da)(da)值(zhi)幾乎相(xiang)同,約為1.27mm。


88.jpg



  根據氬(ya)氣導(dao)(dao)(dao)熱(re)(re)(re)(re)(re)系數(shu)(shu)隨壓力的(de)(de)(de)(de)變(bian)(bian)(bian)化(hua)情況[圖2-89(a)]、凝(ning)固(gu)(gu)過程(cheng)(cheng)中(zhong)界(jie)面(mian)(mian)(mian)(mian)(mian)氣隙(xi)測(ce)量曲(qu)線和(he)鑄(zhu)錠外表(biao)面(mian)(mian)(mian)(mian)(mian)以(yi)及(ji)鑄(zhu)型內表(biao)溫度(du)的(de)(de)(de)(de)變(bian)(bian)(bian)化(hua)曲(qu)線,利用式(shi)(2-171)和(he)式(shi)(2-172)可獲(huo)得氣隙(xi)形成階段3中(zhong)界(jie)面(mian)(mian)(mian)(mian)(mian)氣體(ti)(ti)導(dao)(dao)(dao)熱(re)(re)(re)(re)(re)換(huan)熱(re)(re)(re)(re)(re)系數(shu)(shu)hc,g和(he)輻射換(huan)熱(re)(re)(re)(re)(re)系數(shu)(shu)hr,以(yi)及(ji)換(huan)熱(re)(re)(re)(re)(re)方式(shi)比例關系,結果如(ru)圖2-89(b)所示。輻射換(huan)熱(re)(re)(re)(re)(re)系數(shu)(shu)不受界(jie)面(mian)(mian)(mian)(mian)(mian)氣隙(xi)尺寸(cun)的(de)(de)(de)(de)影響(xiang),在(zai)(zai)(zai)整個(ge)凝(ning)固(gu)(gu)過程(cheng)(cheng)中(zhong),基(ji)(ji)本保持(chi)不變(bian)(bian)(bian);相比之下,氣體(ti)(ti)導(dao)(dao)(dao)熱(re)(re)(re)(re)(re)換(huan)熱(re)(re)(re)(re)(re)系數(shu)(shu)主要由氣體(ti)(ti)導(dao)(dao)(dao)熱(re)(re)(re)(re)(re)系數(shu)(shu)和(he)面(mian)(mian)(mian)(mian)(mian)氣隙(xi)尺寸(cun)共同決定(ding),與氣體(ti)(ti)導(dao)(dao)(dao)熱(re)(re)(re)(re)(re)系數(shu)(shu)成正比,與界(jie)面(mian)(mian)(mian)(mian)(mian)氣隙(xi)尺寸(cun)成反(fan)比,因而在(zai)(zai)(zai)凝(ning)固(gu)(gu)過程(cheng)(cheng)中(zhong)氣體(ti)(ti)導(dao)(dao)(dao)熱(re)(re)(re)(re)(re)換(huan)熱(re)(re)(re)(re)(re)系數(shu)(shu)變(bian)(bian)(bian)化(hua)規律與界(jie)面(mian)(mian)(mian)(mian)(mian)氣隙(xi)尺寸(cun)的(de)(de)(de)(de)變(bian)(bian)(bian)化(hua)過程(cheng)(cheng)截然相反(fan),呈現先迅(xun)速減小,然后(hou)趨于定(ding)值(zhi)。在(zai)(zai)(zai)各個(ge)壓力條(tiao)件下,隨著凝(ning)固(gu)(gu)的(de)(de)(de)(de)進行,界(jie)面(mian)(mian)(mian)(mian)(mian)總(zong)換(huan)熱(re)(re)(re)(re)(re)系數(shu)(shu)(hc,g+h,)迅(xun)速減小,然后(hou)趨于穩定(ding),其中(zhong)輻射換(huan)熱(re)(re)(re)(re)(re)系數(shu)(shu)h1在(zai)(zai)(zai)總(zong)換(huan)熱(re)(re)(re)(re)(re)系數(shu)(shu)中(zhong)的(de)(de)(de)(de)占比為60%~80%[120],且在(zai)(zai)(zai)凝(ning)固(gu)(gu)中(zhong)后(hou)期(qi),0.1MPa、1MPa和(he)2MPa壓力下,總(zong)界(jie)面(mian)(mian)(mian)(mian)(mian)換(huan)熱(re)(re)(re)(re)(re)系數(shu)(shu)基(ji)(ji)本相等。由此可知,低(di)壓下,加壓對由固(gu)(gu)態收縮(suo)形成界(jie)面(mian)(mian)(mian)(mian)(mian)氣隙(xi)的(de)(de)(de)(de)尺寸(cun)影響(xiang)幾乎可以(yi)忽略不計。


89.jpg

 根據以(yi)上討論(lun)可知(zhi),凝固結束后(hou),界(jie)(jie)(jie)面(mian)(mian)(mian)(mian)換熱(re)(re)(re)(re)(re)(re)主要通過(guo)氣(qi)(qi)(qi)體(ti)(ti)導(dao)(dao)熱(re)(re)(re)(re)(re)(re)換熱(re)(re)(re)(re)(re)(re)和(he)輻射(she)換熱(re)(re)(re)(re)(re)(re)兩種(zhong)方式(shi)進(jin)行(xing),因加(jia)壓(ya)對(dui)(dui)輻射(she)換熱(re)(re)(re)(re)(re)(re)系(xi)(xi)(xi)(xi)數(shu)(shu)的(de)影響(xiang)很小,那(nei)(nei)么(me)加(jia)壓(ya)主要通過(guo)改變界(jie)(jie)(jie)面(mian)(mian)(mian)(mian)氣(qi)(qi)(qi)體(ti)(ti)導(dao)(dao)熱(re)(re)(re)(re)(re)(re)換熱(re)(re)(re)(re)(re)(re)系(xi)(xi)(xi)(xi)數(shu)(shu),從而起到(dao)強化冷卻的(de)效果。同(tong)時(shi),界(jie)(jie)(jie)面(mian)(mian)(mian)(mian)氣(qi)(qi)(qi)體(ti)(ti)導(dao)(dao)熱(re)(re)(re)(re)(re)(re)換熱(re)(re)(re)(re)(re)(re)系(xi)(xi)(xi)(xi)數(shu)(shu)主要由氣(qi)(qi)(qi)體(ti)(ti)導(dao)(dao)熱(re)(re)(re)(re)(re)(re)系(xi)(xi)(xi)(xi)數(shu)(shu)和(he)界(jie)(jie)(jie)面(mian)(mian)(mian)(mian)氣(qi)(qi)(qi)體(ti)(ti)尺(chi)寸(cun)(cun)(cun)決定,因壓(ya)力(li)從0.1MPa增加(jia)至2MPa,氬氣(qi)(qi)(qi)導(dao)(dao)熱(re)(re)(re)(re)(re)(re)系(xi)(xi)(xi)(xi)數(shu)(shu)變化很小,進(jin)一步可知(zhi)壓(ya)力(li)主要通過(guo)改變界(jie)(jie)(jie)面(mian)(mian)(mian)(mian)氣(qi)(qi)(qi)隙宏觀(guan)平均(jun)尺(chi)寸(cun)(cun)(cun)影響(xiang)界(jie)(jie)(jie)面(mian)(mian)(mian)(mian)氣(qi)(qi)(qi)體(ti)(ti)導(dao)(dao)熱(re)(re)(re)(re)(re)(re)換熱(re)(re)(re)(re)(re)(re)系(xi)(xi)(xi)(xi)數(shu)(shu),進(jin)而改變界(jie)(jie)(jie)面(mian)(mian)(mian)(mian)總換熱(re)(re)(re)(re)(re)(re)系(xi)(xi)(xi)(xi)數(shu)(shu)。此外(wai),壓(ya)力(li)對(dui)(dui)固態收縮導(dao)(dao)致的(de)界(jie)(jie)(jie)面(mian)(mian)(mian)(mian)氣(qi)(qi)(qi)隙尺(chi)寸(cun)(cun)(cun)影響(xiang)幾乎可以(yi)忽略不計,那(nei)(nei)么(me)壓(ya)力(li)主要通過(guo)改變由凝固收縮導(dao)(dao)致界(jie)(jie)(jie)面(mian)(mian)(mian)(mian)氣(qi)(qi)(qi)隙的(de)尺(chi)寸(cun)(cun)(cun),從而影響(xiang)界(jie)(jie)(jie)面(mian)(mian)(mian)(mian)換熱(re)(re)(re)(re)(re)(re)。為了評估壓(ya)力(li)對(dui)(dui)凝固收縮導(dao)(dao)致界(jie)(jie)(jie)面(mian)(mian)(mian)(mian)氣(qi)(qi)(qi)隙形成(cheng)的(de)影響(xiang),利用界(jie)(jie)(jie)面(mian)(mian)(mian)(mian)換熱(re)(re)(re)(re)(re)(re)系(xi)(xi)(xi)(xi)數(shu)(shu)對(dui)(dui)界(jie)(jie)(jie)面(mian)(mian)(mian)(mian)氣(qi)(qi)(qi)隙宏觀(guan)平均(jun)尺(chi)寸(cun)(cun)(cun)(wm)進(jin)行(xing)計算(suan),計算(suan)公式(shi)如下:


  式中,hz3為(wei)宏觀界面(mian)換(huan)熱(re)系數(shu),通過將測溫數(shu)據作為(wei)輸入量(liang),利用(yong)Beck 非線(xian)性求解(jie)法(fa)獲(huo)得,計算流程如圖2-78所(suo)示(shi)。在整(zheng)個(ge)凝(ning)固(gu)過程中,界面(mian)氣隙(xi)宏觀平(ping)均尺(chi)寸(wm)明(ming)顯小(xiao)于(yu)因(yin)固(gu)態收縮(suo)導致的界面(mian)氣隙(xi)尺(chi)寸(wgap),同時,兩者差值(wgap-wm)隨著(zhu)壓(ya)力的增加而(er)增大(da)(圖2-90).這(zhe)表明(ming)在鑄錠和鑄型(xing)間(jian)存在一(yi)定的固(gu)-固(gu)接觸(chu)區(qu)或(huo)微(wei)間(jian)隙(xi)區(qu)。這(zhe)些區(qu)域的面(mian)積隨著(zhu)壓(ya)力的增大(da)而(er)增大(da),從(cong)而(er)導致傳導換(huan)熱(re)的增加,這(zhe)與鑄錠表面(mian)粗糙度(du)的實驗結果(guo)符合(he),也進一(yi)步(bu)說明(ming)了加壓(ya)對界面(mian)氣隙(xi)尺(chi)寸的影響主要集(ji)中在凝(ning)固(gu)收縮(suo)階段。


90.jpg


  因(yin)此,加(jia)(jia)壓主要通過抑(yi)制由(you)凝固(gu)收縮(suo)(suo)導(dao)致的(de)(de)氣隙形(xing)成,增(zeng)大固(gu)固(gu)接觸(chu)或微氣隙的(de)(de)界(jie)(jie)面(mian)面(mian)積,強化鑄(zhu)(zhu)錠和(he)鑄(zhu)(zhu)型界(jie)(jie)面(mian)完全(quan)接觸(chu)狀態(tai),從而增(zeng)加(jia)(jia)界(jie)(jie)面(mian)氣體導(dao)熱(re)換熱(re)系數;此外,加(jia)(jia)壓下(xia),界(jie)(jie)面(mian)換熱(re)系數的(de)(de)增(zeng)加(jia)(jia),加(jia)(jia)快(kuai)了鑄(zhu)(zhu)錠固(gu)態(tai)收縮(suo)(suo),導(dao)致凝固(gu)初期由(you)固(gu)態(tai)收縮(suo)(suo)引起的(de)(de)氣隙的(de)(de)尺寸快(kuai)速增(zeng)大。





聯系方式.jpg