受(shou)鑄(zhu)錠凝固(gu)收縮(suo)和(he)鑄(zhu)型受(shou)熱(re)(re)(re)(re)膨脹的(de)影響(xiang),鑄(zhu)錠和(he)鑄(zhu)型接觸隨之發生變化(hua),即形成氣(qi)隙,如下(xia)圖所示。當鑄(zhu)錠和(he)鑄(zhu)型間(jian)氣(qi)隙形成以后,鑄(zhu)錠向鑄(zhu)型的(de)傳熱(re)(re)(re)(re)方式不只(zhi)是簡單的(de)傳導傳熱(re)(re)(re)(re),同時存在小區(qu)域(yu)的(de)氣(qi)體(ti)導熱(re)(re)(re)(re)和(he)輻射傳熱(re)(re)(re)(re),導致鑄(zhu)錠-鑄(zhu)型界(jie)面熱(re)(re)(re)(re)阻(1/hz)發生非線性變化(hua)。界(jie)面熱(re)(re)(re)(re)量傳輸可分(fen)為(wei)如下(xia)三個階段(duan)。


  階(jie)段1: 在(zai)(zai)(zai)凝固(gu)初期,當(dang)表(biao)面溫(wen)度略(lve)低于鑄(zhu)錠(ding)液相線(xian)溫(wen)度時(shi),在(zai)(zai)(zai)鑄(zhu)錠(ding)外(wai)表(biao)面會形(xing)成(cheng)一定厚度的半固(gu)態殼(ke);此時(shi),在(zai)(zai)(zai)液體靜壓(ya)(ya)力(li)和外(wai)界壓(ya)(ya)力(li)(如凝固(gu)壓(ya)(ya)力(li)和大氣壓(ya)(ya)等)的作(zuo)用(yong)(yong)下,鑄(zhu)錠(ding)和鑄(zhu)型界面處于完(wan)全(quan)接(jie)觸狀(zhuang)態,如圖2-84(a)所示(shi),因而界面的固(gu)固(gu)接(jie)觸熱(re)量傳輸方式(shi)在(zai)(zai)(zai)界面傳熱(re)過程中(zhong)起主導作(zuo)用(yong)(yong), 此界面宏觀平(ping)均換熱(re)系(xi)數(shu)hz1可表(biao)示(shi)為


   h21=a+b·(P1+P3)  (2-167)


   式(shi)中,a和b為常量;Ph為液(ye)體靜壓(ya)力;Ps為外界壓(ya)力。


   階段(duan)2: 在(zai)(zai)(zai)給(gei)定外界(jie)壓力(li)和液體靜壓力(li)條件(jian)下,半固(gu)(gu)(gu)(gu)態(tai)殼(ke)的(de)(de)(de)(de)強(qiang)度存在(zai)(zai)(zai)一個臨界(jie)值σm;隨(sui)著凝(ning)固(gu)(gu)(gu)(gu)過(guo)程的(de)(de)(de)(de)進行(xing),半固(gu)(gu)(gu)(gu)態(tai)殼(ke)的(de)(de)(de)(de)強(qiang)度不斷(duan)增(zeng)大;當(dang)強(qiang)度大于(yu)(yu)臨界(jie)值時,半固(gu)(gu)(gu)(gu)態(tai)殼(ke)定型;隨(sui)后鑄(zhu)錠(ding)半固(gu)(gu)(gu)(gu)態(tai)殼(ke)逐(zhu)漸與鑄(zhu)型分(fen)離,固(gu)(gu)(gu)(gu)固(gu)(gu)(gu)(gu)接(jie)(jie)觸積逐(zhu)漸減小,氣(qi)(qi)隙(xi)在(zai)(zai)(zai)界(jie)面(mian)某些(xie)位置形(xing)成(cheng)且其尺(chi)寸逐(zhu)漸增(zeng)大,導(dao)致鑄(zhu)錠(ding)和鑄(zhu)型界(jie)面(mian)處于(yu)(yu)半完全(quan)接(jie)(jie)觸狀(zhuang)態(tai),如圖2-84(b)所示。在(zai)(zai)(zai)此階段(duan),氣(qi)(qi)隙(xi)的(de)(de)(de)(de)尺(chi)寸主(zhu)要受(shou)由液相變(bian)固(gu)(gu)(gu)(gu)相發生(sheng)的(de)(de)(de)(de)凝(ning)固(gu)(gu)(gu)(gu)收縮影響。盡管界(jie)面(mian)還存在(zai)(zai)(zai)部分(fen)固(gu)(gu)(gu)(gu)固(gu)(gu)(gu)(gu)接(jie)(jie)觸,但界(jie)面(mian)熱阻隨(sui)著凝(ning)固(gu)(gu)(gu)(gu)的(de)(de)(de)(de)進行(xing)不斷(duan)增(zeng)大,由于(yu)(yu)鑄(zhu)錠(ding)和鑄(zhu)型界(jie)面(mian)接(jie)(jie)觸方式(shi)的(de)(de)(de)(de)變(bian)化,界(jie)面(mian)熱量傳(chuan)輸主(zhu)要由固(gu)(gu)(gu)(gu)固(gu)(gu)(gu)(gu)接(jie)(jie)觸傳(chuan)熱、輻射換熱以及氣(qi)(qi)相導(dao)熱傳(chuan)熱三分(fen)構成(cheng),其中,固(gu)(gu)(gu)(gu)固(gu)(gu)(gu)(gu)接(jie)(jie)觸傳(chuan)熱仍然占據界(jie)面(mian)熱量傳(chuan)輸的(de)(de)(de)(de)主(zhu)導(dao)地位。此階段(duan)界(jie)面(mian)宏觀平均換熱系數hz2可表示為(wei)


84.jpg


 此(ci)外,隨著凝固(gu)(gu)的(de)進行(xing),鑄(zhu)錠和鑄(zhu)型界(jie)面上固(gu)(gu)固(gu)(gu)接(jie)(jie)觸(chu)面積(ji)逐漸(jian)(jian)減小(xiao),因而階(jie)段1界(jie)面宏(hong)觀平(ping)均換熱(re)系(xi)(xi)(xi)數hz1最大,階(jie)段2界(jie)面宏(hong)觀平(ping)均換熱(re)系(xi)(xi)(xi)數hz2值(zhi)次之,階(jie)段3界(jie)面宏(hong)觀平(ping)均換熱(re)系(xi)(xi)(xi)數hz3值(zhi)最小(xiao),這(zhe)與實際凝固(gu)(gu)過程中界(jie)面換熱(re)系(xi)(xi)(xi)數逐漸(jian)(jian)減小(xiao)的(de)規律相互印證。同(tong)時,在鑄(zhu)錠自身(shen)重力(li)的(de)作用下,在鑄(zhu)錠底部位置,界(jie)面半完全(quan)接(jie)(jie)觸(chu)狀態始終貫(guan)穿(chuan)整個凝固(gu)(gu)過程,這(zhe)與鑄(zhu)錠頂端界(jie)面固(gu)(gu)固(gu)(gu)接(jie)(jie)觸(chu)完全(quan)消失有所不同(tong),如(ru)圖2-84(d)所示。


  凝固壓力在氣隙的(de)形(xing)成過(guo)程中扮演了十分(fen)重要(yao)的(de)角(jiao)色。研究表明,增加凝固壓力(兆帕(pa)級)具(ju)有明顯的(de)強化(hua)冷(leng)卻效果,但(dan)在界(jie)面(mian)熱量傳輸變化(hua)的(de)三(san)個(ge)階段,加壓強化(hua)冷(leng)卻的(de)程度大有不同。


 階段1:當壓(ya)(ya)力(li)在幾兆(zhao)帕下變化(hua)時(shi),由于(yu)物(wu)性(xing)參數(如強度、密度和導熱(re)系(xi)數等)的變化(hua)量可(ke)以忽(hu)略(lve)不(bu)(bu)計,壓(ya)(ya)力(li)對(dui)鑄(zhu)錠和鑄(zhu)型界(jie)面(mian)完全接觸(chu)狀態影響較小,根據式(2-166)可(ke)知,壓(ya)(ya)力(li)對(dui)界(jie)面(mian)宏觀平(ping)均換熱(re)系(xi)數的影響可(ke)以忽(hu)略(lve)不(bu)(bu)計,因此增加壓(ya)(ya)力(li)對(dui)階段1的界(jie)面(mian)換熱(re)影響很小。


  階段2:在此階段,鑄(zhu)錠(ding)和鑄(zhu)型(xing)界(jie)面非完全(quan)接觸狀態主要由凝固收縮控制(zhi)。


  隨著(zhu)(zhu)壓(ya)(ya)力的(de)(de)(de)增(zeng)加(jia)(jia),半固(gu)(gu)(gu)態殼抵抗變(bian)形所需臨界強(qiang)度(du)增(zeng)大(da),因而加(jia)(jia)壓(ya)(ya)能夠(gou)(gou)抑(yi)(yi)制界面(mian)(mian)非完全接觸狀態的(de)(de)(de)形成,有助于(yu)將界面(mian)(mian)在整個凝固(gu)(gu)(gu)過(guo)程中實現(xian)保持(chi)固(gu)(gu)(gu)固(gu)(gu)(gu)接觸的(de)(de)(de)狀態。例如,隨著(zhu)(zhu)壓(ya)(ya)力的(de)(de)(de)增(zeng)加(jia)(jia),H13表(biao)面(mian)(mian)上的(de)(de)(de)坑變(bian)得(de)淺平,且數量逐(zhu)漸減少,意味著(zhu)(zhu)鑄(zhu)(zhu)(zhu)錠(ding)表(biao)面(mian)(mian)越(yue)來越(yue)光滑,粗糙度(du)減小,鑄(zhu)(zhu)(zhu)錠(ding)鑄(zhu)(zhu)(zhu)型界面(mian)(mian)處的(de)(de)(de)固(gu)(gu)(gu)固(gu)(gu)(gu)接觸面(mian)(mian)積增(zeng)大(da)。根據式(2-168)可(ke)知,界面(mian)(mian)宏觀(guan)平均傳熱系數與壓(ya)(ya)力趨于(yu)正比關系,加(jia)(jia)壓(ya)(ya)能夠(gou)(gou)顯(xian)著(zhu)(zhu)提升此階段界面(mian)(mian)宏觀(guan)平均換(huan)熱系數。因此,增(zeng)加(jia)(jia)壓(ya)(ya)力能夠(gou)(gou)強(qiang)化鑄(zhu)(zhu)(zhu)錠(ding)鑄(zhu)(zhu)(zhu)型間(jian)界面(mian)(mian)固(gu)(gu)(gu)固(gu)(gu)(gu)接觸狀態,抑(yi)(yi)制由凝固(gu)(gu)(gu)收縮(suo)導致界面(mian)(mian)氣隙的(de)(de)(de)形成,加(jia)(jia)快鑄(zhu)(zhu)(zhu)錠(ding)鑄(zhu)(zhu)(zhu)型界面(mian)(mian)傳遞(di),強(qiang)化冷卻效果明顯(xian)。


  階段3:界(jie)面(mian)(mian)(mian)氣(qi)(qi)(qi)(qi)隙(xi)的長大(da)主(zhu)要(yao)受控于固態(tai)收縮。隨著界(jie)面(mian)(mian)(mian)氣(qi)(qi)(qi)(qi)隙(xi)尺寸的變大(da),外界(jie)逐步與(yu)界(jie)面(mian)(mian)(mian)氣(qi)(qi)(qi)(qi)隙(xi)連通,在壓(ya)力(li)的作(zuo)用下,氣(qi)(qi)(qi)(qi)體(ti)(ti)逐漸進(jin)入界(jie)面(mian)(mian)(mian)氣(qi)(qi)(qi)(qi)隙(xi)內,進(jin)而導(dao)(dao)致界(jie)面(mian)(mian)(mian)氣(qi)(qi)(qi)(qi)隙(xi)與(yu)外界(jie)之間的壓(ya)差趨(qu)于零,壓(ya)力(li)對界(jie)面(mian)(mian)(mian)氣(qi)(qi)(qi)(qi)隙(xi)的影響逐漸消失。此階段,氣(qi)(qi)(qi)(qi)體(ti)(ti)導(dao)(dao)熱(re)(re)換熱(re)(re)與(yu)輻射換熱(re)(re)為界(jie)面(mian)(mian)(mian)換熱(re)(re)的主(zhu)要(yao)方式(shi)。其中氣(qi)(qi)(qi)(qi)體(ti)(ti)導(dao)(dao)熱(re)(re)換熱(re)(re)系數(shu)(hc,g)主(zhu)要(yao)由(you)氣(qi)(qi)(qi)(qi)隙(xi)內氣(qi)(qi)(qi)(qi)體(ti)(ti)導(dao)(dao)熱(re)(re)系數(shu)(kgap)和(he)界(jie)面(mian)(mian)(mian)氣(qi)(qi)(qi)(qi)隙(xi)尺寸(wgap)決(jue)定(ding),作(zuo)為計算(suan)(suan)氣(qi)(qi)(qi)(qi)體(ti)(ti)導(dao)(dao)熱(re)(re)換熱(re)(re)系數(shu)的重要(yao)參數(shu),在給(gei)定(ding)壓(ya)力(li)下氣(qi)(qi)(qi)(qi)體(ti)(ti)導(dao)(dao)熱(re)(re)系數(shu)(kgap)可由(you)下列(lie)公式(shi)進(jin)行計算(suan)(suan):


式 170.jpg



  綜(zong)上所述,在(zai)通(tong)過氣體維持壓(ya)力的(de)加(jia)壓(ya)條件下,壓(ya)力對界面換(huan)熱(re)系數的(de)影響主(zhu)要(yao)集中(zhong)在(zai)界面氣隙形(xing)成的(de)第二階段,即在(zai)鑄錠殼凝(ning)固收縮(suo)階段加(jia)壓(ya)通(tong)過增大鑄錠殼抵抗變形(xing)所需(xu)臨(lin)界強度(du)從而改善(shan)界面換(huan)熱(re),起到強化(hua)冷卻的(de)作用。


  以(yi)H13在0.1MPa、1MPa和(he)(he)(he)2MPa壓力下凝(ning)(ning)(ning)(ning)固為(wei)例,其凝(ning)(ning)(ning)(ning)固壓力通(tong)過(guo)充入(ru)氬氣獲得。為(wei)了分(fen)(fen)析加(jia)壓對界(jie)面(mian)(mian)氣隙尺寸(cun)和(he)(he)(he)換熱方式的(de)(de)影響規律,采用(yong)埋(mai)設熱電偶(ou)(ou)以(yi)及位(wei)(wei)移(yi)傳感器實驗,同時測量凝(ning)(ning)(ning)(ning)固過(guo)程中(zhong)鑄(zhu)錠和(he)(he)(he)鑄(zhu)型(xing)(xing)溫(wen)(wen)度(du)變(bian)(bian)化(hua)曲(qu)(qu)線(xian)(xian)以(yi)及其位(wei)(wei)移(yi)變(bian)(bian)化(hua)曲(qu)(qu)線(xian)(xian),其中(zhong),1#和(he)(he)(he)2#熱電偶(ou)(ou)分(fen)(fen)別測量離鑄(zhu)錠外表(biao)面(mian)(mian)10mm和(he)(he)(he)15mm位(wei)(wei)置(zhi)處(chu)鑄(zhu)錠溫(wen)(wen)度(du)變(bian)(bian)化(hua)曲(qu)(qu)線(xian)(xian);3#和(he)(he)(he)4#熱電偶(ou)(ou)分(fen)(fen)別測量鑄(zhu)型(xing)(xing)內(nei)表(biao)面(mian)(mian)5mm和(he)(he)(he)10mm位(wei)(wei)置(zhi)處(chu)鑄(zhu)型(xing)(xing)的(de)(de)溫(wen)(wen)度(du)變(bian)(bian)化(hua)曲(qu)(qu)線(xian)(xian);位(wei)(wei)移(yi)傳感器LVDT1和(he)(he)(he)LVDT2的(de)(de)探(tan)頭位(wei)(wei)置(zhi)離鑄(zhu)型(xing)(xing)內(nei)表(biao)面(mian)(mian)徑(jing)向(xiang)距離均為(wei)5mm,分(fen)(fen)別插入(ru)鑄(zhu)錠和(he)(he)(he)鑄(zhu)型(xing)(xing)中(zhong)測量凝(ning)(ning)(ning)(ning)固過(guo)程中(zhong)其位(wei)(wei)移(yi)變(bian)(bian)化(hua)曲(qu)(qu)線(xian)(xian)。測量溫(wen)(wen)度(du)和(he)(he)(he)位(wei)(wei)移(yi)變(bian)(bian)化(hua)曲(qu)(qu)線(xian)(xian)的(de)(de)裝置(zhi)如圖2-85所示。


85.jpg



  溫(wen)度測量(liang)曲(qu)線(xian)如(ru)圖2-86所示,對于鑄(zhu)錠溫(wen)度測量(liang)曲(qu)線(xian),存在“陡升”和“振蕩”區(qu)域(yu),這主要由(you)熱電偶預(yu)熱和澆注引起鋼液(ye)湍流分別造成。隨著凝固過程的進行,鑄(zhu)型溫(wen)度升高,鑄(zhu)錠溫(wen)度不斷降低。


86.jpg


  因(yin)鑄(zhu)(zhu)(zhu)型(xing)(xing)(xing)內表(biao)(biao)面(mian)(mian)(mian)(mian)(mian)(mian)和(he)鑄(zhu)(zhu)(zhu)錠(ding)外(wai)(wai)(wai)(wai)表(biao)(biao)面(mian)(mian)(mian)(mian)(mian)(mian)溫(wen)(wen)(wen)度(du)幾乎難(nan)以通過(guo)實驗進行準(zhun)確測(ce)量(liang),因(yin)而可通過(guo)數值計算(suan)的方式獲得(de),即以測(ce)量(liang)的鑄(zhu)(zhu)(zhu)錠(ding)和(he)鑄(zhu)(zhu)(zhu)型(xing)(xing)(xing)溫(wen)(wen)(wen)度(du)變化曲線(xian)作(zuo)為(wei)輸(shu)入量(liang),采用Beck 非(fei)線(xian)性求解法,計算(suan)鑄(zhu)(zhu)(zhu)型(xing)(xing)(xing)內表(biao)(biao)面(mian)(mian)(mian)(mian)(mian)(mian)(Tw,i)和(he)鑄(zhu)(zhu)(zhu)錠(ding)外(wai)(wai)(wai)(wai)表(biao)(biao)面(mian)(mian)(mian)(mian)(mian)(mian)溫(wen)(wen)(wen)度(du)(Twm),由于鑄(zhu)(zhu)(zhu)錠(ding)和(he)鑄(zhu)(zhu)(zhu)型(xing)(xing)(xing)表(biao)(biao)面(mian)(mian)(mian)(mian)(mian)(mian)非(fei)鏡(jing)面(mian)(mian)(mian)(mian)(mian)(mian),有一(yi)定(ding)粗糙度(du),因(yin)而計算(suan)所(suo)得(de)鑄(zhu)(zhu)(zhu)型(xing)(xing)(xing)內表(biao)(biao)面(mian)(mian)(mian)(mian)(mian)(mian)(Tw,i)和(he)鑄(zhu)(zhu)(zhu)錠(ding)外(wai)(wai)(wai)(wai)表(biao)(biao)面(mian)(mian)(mian)(mian)(mian)(mian)溫(wen)(wen)(wen)度(du)(Tw,m)均為(wei)宏觀平均表(biao)(biao)面(mian)(mian)(mian)(mian)(mian)(mian)溫(wen)(wen)(wen)度(du),計算(suan)結果(guo)如圖2-87所(suo)示。當壓(ya)力一(yi)定(ding)時,在鑄(zhu)(zhu)(zhu)錠(ding)鑄(zhu)(zhu)(zhu)型(xing)(xing)(xing)界(jie)面(mian)(mian)(mian)(mian)(mian)(mian)換(huan)熱以及鑄(zhu)(zhu)(zhu)型(xing)(xing)(xing)外(wai)(wai)(wai)(wai)表(biao)(biao)面(mian)(mian)(mian)(mian)(mian)(mian)散(san)熱的影(ying)響下,鑄(zhu)(zhu)(zhu)錠(ding)外(wai)(wai)(wai)(wai)表(biao)(biao)面(mian)(mian)(mian)(mian)(mian)(mian)溫(wen)(wen)(wen)度(du)(Tw,i)在整個凝(ning)固過(guo)程中持續降(jiang)低,鑄(zhu)(zhu)(zhu)型(xing)(xing)(xing)內表(biao)(biao)面(mian)(mian)(mian)(mian)(mian)(mian)(Tw,m)先增(zeng)加(jia)而后逐漸降(jiang)低。隨著壓(ya)力從0.1MPa增(zeng)加(jia)至2MPa,鑄(zhu)(zhu)(zhu)錠(ding)外(wai)(wai)(wai)(wai)表(biao)(biao)面(mian)(mian)(mian)(mian)(mian)(mian)降(jiang)溫(wen)(wen)(wen)速(su)(su)率(lv)和(he)鑄(zhu)(zhu)(zhu)型(xing)(xing)(xing)內表(biao)(biao)面(mian)(mian)(mian)(mian)(mian)(mian)升溫(wen)(wen)(wen)速(su)(su)率(lv)明顯加(jia)快,表(biao)(biao)明加(jia)壓(ya)對鑄(zhu)(zhu)(zhu)錠(ding)和(he)鑄(zhu)(zhu)(zhu)型(xing)(xing)(xing)界(jie)面(mian)(mian)(mian)(mian)(mian)(mian)間換(huan)熱速(su)(su)率(lv)影(ying)響顯著。


87.jpg


  當壓力一定(ding)時,界(jie)面(mian)氣(qi)(qi)隙(xi)(xi)寬(kuan)度(du)(du)隨時間的(de)(de)變化(hua)(hua)關系(xi)可通過凝固過程(cheng)中(zhong)鑄(zhu)(zhu)錠(ding)和(he)(he)(he)鑄(zhu)(zhu)型(xing)(xing)位(wei)移(yi)變化(hua)(hua)曲線獲(huo)得。基(ji)(ji)于位(wei)移(yi)傳感器的(de)(de)位(wei)移(yi)測量(liang)(liang)結果(guo),所(suo)得界(jie)面(mian)氣(qi)(qi)隙(xi)(xi)寬(kuan)度(du)(du)隨時間的(de)(de)變化(hua)(hua)關系(xi)如圖2-88(a)所(suo)示,在(zai)0.1MPa、1MPa和(he)(he)(he)2MPa下(xia),界(jie)面(mian)氣(qi)(qi)隙(xi)(xi)寬(kuan)度(du)(du)隨時間變化(hua)(hua)規律基(ji)(ji)本相(xiang)似。以(yi)2MPa為(wei)例,在(zai)凝固初期,鑄(zhu)(zhu)錠(ding)、鑄(zhu)(zhu)型(xing)(xing)和(he)(he)(he)位(wei)移(yi)傳感器之間存(cun)在(zai)巨(ju)大(da)溫(wen)差,使得位(wei)移(yi)傳感器附近的(de)(de)鋼液迅速凝固,以(yi)至(zhi)于無(wu)法測量(liang)(liang)階(jie)段2 中(zhong)凝固收(shou)縮導致(zhi)(zhi)的(de)(de)氣(qi)(qi)隙(xi)(xi)寬(kuan)度(du)(du);同時,鑄(zhu)(zhu)錠(ding)和(he)(he)(he)鑄(zhu)(zhu)型(xing)(xing)初期溫(wen)差巨(ju)大(da),加速了鑄(zhu)(zhu)型(xing)(xing)升溫(wen)膨脹和(he)(he)(he)鑄(zhu)(zhu)錠(ding)冷(leng)卻收(shou)縮,因而(er)在(zai)界(jie)面(mian)氣(qi)(qi)隙(xi)(xi)尺(chi)寸(cun)隨時間變化(hua)(hua)曲線前段不(bu)存(cun)氣(qi)(qi)隙(xi)(xi)尺(chi)寸(cun)緩慢增(zeng)長部分(fen),取而(er)代之的(de)(de)是氣(qi)(qi)隙(xi)(xi)寬(kuan)度(du)(du)隨時間的(de)(de)陡(dou)升,而(er)且氣(qi)(qi)隙(xi)(xi)寬(kuan)度(du)(du)的(de)(de)陡(dou)升很大(da)程(cheng)度(du)(du)由鑄(zhu)(zhu)錠(ding)固態(tai)收(shou)縮所(suo)致(zhi)(zhi)。因此,位(wei)移(yi)傳感器所(suo)測氣(qi)(qi)隙(xi)(xi)尺(chi)寸(cun)僅包(bao)含了固態(tai)收(shou)縮導致(zhi)(zhi)氣(qi)(qi)隙(xi)(xi)形(xing)成(cheng)(cheng)部分(fen),無(wu)因凝固收(shou)縮形(xing)成(cheng)(cheng)氣(qi)(qi)隙(xi)(xi)部分(fen)。在(zai)低壓下(xia),增(zeng)加壓力對鑄(zhu)(zhu)型(xing)(xing)和(he)(he)(he)鑄(zhu)(zhu)錠(ding)的(de)(de)密度(du)(du)影(ying)響很小,幾(ji)乎可以(yi)忽略不(bu)計,所(suo)以(yi)增(zeng)加壓力對鑄(zhu)(zhu)型(xing)(xing)固態(tai)收(shou)縮導致(zhi)(zhi)氣(qi)(qi)隙(xi)(xi)的(de)(de)尺(chi)寸(cun)影(ying)響非常(chang)小,所(suo)以(yi)在(zai)0.1MPa、1MPa和(he)(he)(he)2MPa下(xia),界(jie)面(mian)氣(qi)(qi)隙(xi)(xi)尺(chi)寸(cun)傳感器量(liang)(liang)的(de)(de)最(zui)大(da)值幾(ji)乎相(xiang)同,約為(wei)1.27mm。


88.jpg



  根據氬氣(qi)(qi)導熱(re)系(xi)(xi)數(shu)(shu)(shu)(shu)隨壓力的(de)變(bian)化(hua)情況[圖2-89(a)]、凝固(gu)(gu)過(guo)程中(zhong)界面(mian)(mian)(mian)(mian)氣(qi)(qi)隙(xi)測量曲線和鑄(zhu)錠外表(biao)面(mian)(mian)(mian)(mian)以及(ji)鑄(zhu)型內表(biao)溫度的(de)變(bian)化(hua)曲線,利用式(shi)(2-171)和式(shi)(2-172)可(ke)(ke)獲得(de)氣(qi)(qi)隙(xi)形成(cheng)(cheng)階段3中(zhong)界面(mian)(mian)(mian)(mian)氣(qi)(qi)體導熱(re)換(huan)(huan)熱(re)系(xi)(xi)數(shu)(shu)(shu)(shu)hc,g和輻射(she)(she)換(huan)(huan)熱(re)系(xi)(xi)數(shu)(shu)(shu)(shu)hr,以及(ji)換(huan)(huan)熱(re)方式(shi)比(bi)例關系(xi)(xi),結果(guo)如圖2-89(b)所示。輻射(she)(she)換(huan)(huan)熱(re)系(xi)(xi)數(shu)(shu)(shu)(shu)不受(shou)界面(mian)(mian)(mian)(mian)氣(qi)(qi)隙(xi)尺(chi)寸的(de)影響(xiang),在(zai)(zai)整個凝固(gu)(gu)過(guo)程中(zhong),基本保(bao)持不變(bian);相(xiang)比(bi)之下(xia),氣(qi)(qi)體導熱(re)換(huan)(huan)熱(re)系(xi)(xi)數(shu)(shu)(shu)(shu)主要(yao)由(you)氣(qi)(qi)體導熱(re)系(xi)(xi)數(shu)(shu)(shu)(shu)和面(mian)(mian)(mian)(mian)氣(qi)(qi)隙(xi)尺(chi)寸共同決定(ding),與氣(qi)(qi)體導熱(re)系(xi)(xi)數(shu)(shu)(shu)(shu)成(cheng)(cheng)正比(bi),與界面(mian)(mian)(mian)(mian)氣(qi)(qi)隙(xi)尺(chi)寸成(cheng)(cheng)反比(bi),因(yin)而在(zai)(zai)凝固(gu)(gu)過(guo)程中(zhong)氣(qi)(qi)體導熱(re)換(huan)(huan)熱(re)系(xi)(xi)數(shu)(shu)(shu)(shu)變(bian)化(hua)規律與界面(mian)(mian)(mian)(mian)氣(qi)(qi)隙(xi)尺(chi)寸的(de)變(bian)化(hua)過(guo)程截然(ran)(ran)相(xiang)反,呈現(xian)先(xian)迅(xun)速(su)減小,然(ran)(ran)后(hou)(hou)趨于定(ding)值。在(zai)(zai)各個壓力條件下(xia),隨著凝固(gu)(gu)的(de)進行,界面(mian)(mian)(mian)(mian)總換(huan)(huan)熱(re)系(xi)(xi)數(shu)(shu)(shu)(shu)(hc,g+h,)迅(xun)速(su)減小,然(ran)(ran)后(hou)(hou)趨于穩(wen)定(ding),其中(zhong)輻射(she)(she)換(huan)(huan)熱(re)系(xi)(xi)數(shu)(shu)(shu)(shu)h1在(zai)(zai)總換(huan)(huan)熱(re)系(xi)(xi)數(shu)(shu)(shu)(shu)中(zhong)的(de)占比(bi)為60%~80%[120],且在(zai)(zai)凝固(gu)(gu)中(zhong)后(hou)(hou)期,0.1MPa、1MPa和2MPa壓力下(xia),總界面(mian)(mian)(mian)(mian)換(huan)(huan)熱(re)系(xi)(xi)數(shu)(shu)(shu)(shu)基本相(xiang)等。由(you)此可(ke)(ke)知,低壓下(xia),加壓對(dui)由(you)固(gu)(gu)態收縮(suo)形成(cheng)(cheng)界面(mian)(mian)(mian)(mian)氣(qi)(qi)隙(xi)的(de)尺(chi)寸影響(xiang)幾乎可(ke)(ke)以忽(hu)略不計。


89.jpg

 根據以(yi)上(shang)討論可知,凝固(gu)(gu)(gu)結束后,界(jie)(jie)(jie)面(mian)(mian)換(huan)(huan)(huan)熱(re)(re)(re)主要(yao)(yao)(yao)通(tong)過(guo)氣(qi)體導(dao)(dao)(dao)熱(re)(re)(re)換(huan)(huan)(huan)熱(re)(re)(re)和輻射換(huan)(huan)(huan)熱(re)(re)(re)兩種方式進(jin)(jin)行,因加(jia)壓對輻射換(huan)(huan)(huan)熱(re)(re)(re)系(xi)數(shu)的(de)影響很小(xiao),那(nei)么加(jia)壓主要(yao)(yao)(yao)通(tong)過(guo)改(gai)變(bian)(bian)界(jie)(jie)(jie)面(mian)(mian)氣(qi)體導(dao)(dao)(dao)熱(re)(re)(re)換(huan)(huan)(huan)熱(re)(re)(re)系(xi)數(shu),從而(er)(er)起到強化冷卻的(de)效果。同時,界(jie)(jie)(jie)面(mian)(mian)氣(qi)體導(dao)(dao)(dao)熱(re)(re)(re)換(huan)(huan)(huan)熱(re)(re)(re)系(xi)數(shu)主要(yao)(yao)(yao)由氣(qi)體導(dao)(dao)(dao)熱(re)(re)(re)系(xi)數(shu)和界(jie)(jie)(jie)面(mian)(mian)氣(qi)體尺(chi)(chi)寸決定,因壓力(li)從0.1MPa增(zeng)加(jia)至2MPa,氬氣(qi)導(dao)(dao)(dao)熱(re)(re)(re)系(xi)數(shu)變(bian)(bian)化很小(xiao),進(jin)(jin)一步(bu)可知壓力(li)主要(yao)(yao)(yao)通(tong)過(guo)改(gai)變(bian)(bian)界(jie)(jie)(jie)面(mian)(mian)氣(qi)隙(xi)宏觀平均(jun)尺(chi)(chi)寸影響界(jie)(jie)(jie)面(mian)(mian)氣(qi)體導(dao)(dao)(dao)熱(re)(re)(re)換(huan)(huan)(huan)熱(re)(re)(re)系(xi)數(shu),進(jin)(jin)而(er)(er)改(gai)變(bian)(bian)界(jie)(jie)(jie)面(mian)(mian)總換(huan)(huan)(huan)熱(re)(re)(re)系(xi)數(shu)。此外,壓力(li)對固(gu)(gu)(gu)態收縮導(dao)(dao)(dao)致的(de)界(jie)(jie)(jie)面(mian)(mian)氣(qi)隙(xi)尺(chi)(chi)寸影響幾乎可以(yi)忽略不計(ji),那(nei)么壓力(li)主要(yao)(yao)(yao)通(tong)過(guo)改(gai)變(bian)(bian)由凝固(gu)(gu)(gu)收縮導(dao)(dao)(dao)致界(jie)(jie)(jie)面(mian)(mian)氣(qi)隙(xi)的(de)尺(chi)(chi)寸,從而(er)(er)影響界(jie)(jie)(jie)面(mian)(mian)換(huan)(huan)(huan)熱(re)(re)(re)。為了評估壓力(li)對凝固(gu)(gu)(gu)收縮導(dao)(dao)(dao)致界(jie)(jie)(jie)面(mian)(mian)氣(qi)隙(xi)形成(cheng)的(de)影響,利用(yong)界(jie)(jie)(jie)面(mian)(mian)換(huan)(huan)(huan)熱(re)(re)(re)系(xi)數(shu)對界(jie)(jie)(jie)面(mian)(mian)氣(qi)隙(xi)宏觀平均(jun)尺(chi)(chi)寸(wm)進(jin)(jin)行計(ji)算(suan)(suan),計(ji)算(suan)(suan)公式如下:


  式中(zhong),hz3為宏觀界(jie)面(mian)(mian)換熱(re)系(xi)數(shu),通過將(jiang)測(ce)溫數(shu)據作為輸入量,利用Beck 非線性(xing)求解法(fa)獲得,計算(suan)流程如圖(tu)2-78所示(shi)。在整個凝固過程中(zhong),界(jie)面(mian)(mian)氣隙(xi)宏觀平均尺(chi)寸(cun)(wm)明顯小于因(yin)固態收縮(suo)導(dao)致的界(jie)面(mian)(mian)氣隙(xi)尺(chi)寸(cun)(wgap),同時,兩者差值(zhi)(wgap-wm)隨(sui)(sui)著(zhu)壓力(li)(li)的增加(jia)而增大(da)(圖(tu)2-90).這表明在鑄錠(ding)和鑄型間存在一定的固-固接(jie)觸區(qu)或微(wei)間隙(xi)區(qu)。這些區(qu)域的面(mian)(mian)積隨(sui)(sui)著(zhu)壓力(li)(li)的增大(da)而增大(da),從而導(dao)致傳導(dao)換熱(re)的增加(jia),這與(yu)鑄錠(ding)表面(mian)(mian)粗(cu)糙度(du)的實驗結果符合,也(ye)進一步說明了(le)加(jia)壓對界(jie)面(mian)(mian)氣隙(xi)尺(chi)寸(cun)的影響(xiang)主(zhu)要集(ji)中(zhong)在凝固收縮(suo)階段。


90.jpg


  因此(ci),加壓主要通(tong)過抑制由(you)凝固(gu)收縮(suo)導致的氣(qi)隙形成,增(zeng)大固(gu)固(gu)接觸(chu)(chu)或微氣(qi)隙的界(jie)(jie)面(mian)面(mian)積,強化鑄(zhu)錠(ding)(ding)和鑄(zhu)型界(jie)(jie)面(mian)完全接觸(chu)(chu)狀態,從而增(zeng)加界(jie)(jie)面(mian)氣(qi)體導熱(re)換熱(re)系數;此(ci)外,加壓下,界(jie)(jie)面(mian)換熱(re)系數的增(zeng)加,加快了鑄(zhu)錠(ding)(ding)固(gu)態收縮(suo),導致凝固(gu)初期由(you)固(gu)態收縮(suo)引起的氣(qi)隙的尺寸快速增(zeng)大。





聯系方式.jpg