一、氮氣孔(kong)的形成機理


  在(zai)(zai)(zai)21.5Cr5Mn1.5Ni0.25N含(han)氮(dan)雙相(xiang)(xiang)鋼(gang)凝固(gu)過程(cheng)中,氮(dan)氣(qi)(qi)孔形(xing)(xing)成(cheng)和凝固(gu)前沿處[%N]1iq隨距(ju)離變化的(de)(de)(de)(de)規律(lv)如圖(tu)2-55所示(shi)。由于(yu)(yu)糊狀區(qu)內大量枝(zhi)(zhi)(zhi)晶(jing)網狀結構的(de)(de)(de)(de)形(xing)(xing)成(cheng),液(ye)(ye)相(xiang)(xiang)的(de)(de)(de)(de)對流只存在(zai)(zai)(zai)于(yu)(yu)一(yi)次枝(zhi)(zhi)(zhi)晶(jing)尖(jian)端位置附近。且(qie)(qie)枝(zhi)(zhi)(zhi)晶(jing)間幾乎無液(ye)(ye)相(xiang)(xiang)的(de)(de)(de)(de)流動。因此,枝(zhi)(zhi)(zhi)晶(jing)間殘(can)余(yu)(yu)液(ye)(ye)相(xiang)(xiang)中的(de)(de)(de)(de)氮(dan)傳(chuan)(chuan)質(zhi)主要依靠氮(dan)的(de)(de)(de)(de)擴(kuo)散行為,且(qie)(qie)糊狀區(qu)內氮(dan)傳(chuan)(chuan)質(zhi)速率(lv)非常(chang)小。初始相(xiang)(xiang)貧(pin)氮(dan)鐵素體相(xiang)(xiang)8的(de)(de)(de)(de)氮(dan)溶解度和糊狀區(qu)的(de)(de)(de)(de)氮(dan)傳(chuan)(chuan)質(zhi)速率(lv)較(jiao)低(di),導致在(zai)(zai)(zai)貧(pin)氮(dan)鐵素體相(xiang)(xiang)枝(zhi)(zhi)(zhi)晶(jing)附近的(de)(de)(de)(de)液(ye)(ye)相(xiang)(xiang)中出(chu)現氮(dan)富集,且(qie)(qie)[%N]iq迅速增大,如圖(tu)2-55(a)所示(shi)。根(gen)據Yang和 Leel70]、Svyazhin 等、Ridolfi 和 Tassal的(de)(de)(de)(de)報(bao)道可知,當[%N]iq的(de)(de)(de)(de)最大值超過氮(dan)氣(qi)(qi)泡(pao)形(xing)(xing)成(cheng)的(de)(de)(de)(de)臨(lin)界氮(dan)質(zhi)量分(fen)數([%N]pore)時,該(gai)區(qu)域有氣(qi)(qi)泡(pao)形(xing)(xing)成(cheng)的(de)(de)(de)(de)可能性(xing),如圖(tu)2-55(b)所示(shi)。在(zai)(zai)(zai)后續的(de)(de)(de)(de)凝固(gu)過程(cheng)中,隨著包晶(jing)反(fan)應的(de)(de)(de)(de)進行,富氮(dan)奧氏體相(xiang)(xiang)γ以異質(zhi)形(xing)(xing)核的(de)(de)(de)(de)方式在(zai)(zai)(zai)鐵素體相(xiang)(xiang)8枝(zhi)(zhi)(zhi)晶(jing)的(de)(de)(de)(de)表(biao)面(mian)開始形(xing)(xing)核長(chang)(chang)大,逐漸包裹鐵素體相(xiang)(xiang)枝(zhi)(zhi)(zhi)晶(jing)表(biao)面(mian),并開始捕(bu)獲(huo)殘(can)余(yu)(yu)液(ye)(ye)相(xiang)(xiang)中的(de)(de)(de)(de)氮(dan)氣(qi)(qi)泡(pao),對比(bi)圖(tu)2-51和圖(tu)2-56可知,此時枝(zhi)(zhi)(zhi)晶(jing)間殘(can)余(yu)(yu)[%N]1ig的(de)(de)(de)(de)增長(chang)(chang)速率(lv)減小。對平衡凝固(gu)而(er)言,殘(can)余(yu)(yu)液(ye)(ye)相(xiang)(xiang)中氮(dan)氣(qi)(qi)泡(pao)形(xing)(xing)成(cheng)以后,氮(dan)的(de)(de)(de)(de)富集程(cheng)度減弱,[%N]1iq增長(chang)(chang)速率(lv)的(de)(de)(de)(de)減小程(cheng)度明顯;相(xiang)(xiang)比(bi)之下(xia),Scheil凝固(gu)過程(cheng)中,氮(dan)氣(qi)(qi)泡(pao)形(xing)(xing)成(cheng)以后,殘(can)余(yu)(yu)液(ye)(ye)相(xiang)(xiang)中氮(dan)富集狀態有所緩解,但幅度很(hen)小。隨著凝固(gu)界面(mian)的(de)(de)(de)(de)進一(yi)步推移,被捕(bu)獲(huo)的(de)(de)(de)(de)氮(dan)氣(qi)(qi)泡(pao)在(zai)(zai)(zai)奧氏體相(xiang)(xiang)表(biao)面(mian)開始長(chang)(chang)大,并沿凝固(gu)方向拉長(chang)(chang),如圖(tu)2-55(c)所示(shi)。



  氮(dan)(dan)(dan)氣(qi)孔(kong)(kong)沿徑向生(sheng)長(chang),生(sheng)長(chang)方向與(yu)凝固(gu)方向一(yi)致,那(nei)么氮(dan)(dan)(dan)氣(qi)孔(kong)(kong)初始形成(cheng)位(wei)置靠近鑄錠邊部,且氮(dan)(dan)(dan)氣(qi)泡初始位(wei)置邊緣全由奧氏(shi)體(ti)(ti)相γ構成(cheng)(圖(tu)2-57中I區),與(yu)圖(tu)2-55描述相符。隨著氮(dan)(dan)(dan)氣(qi)孔(kong)(kong)被(bei)拉長(chang),鐵(tie)素體(ti)(ti)相和奧氏(shi)體(ti)(ti)相以體(ti)(ti)積分(fen)數比(bi)約為0.92的(de)關系交(jiao)替在氮(dan)(dan)(dan)氣(qi)泡周(zhou)圍形成(cheng),直(zhi)到氮(dan)(dan)(dan)氣(qi)孔(kong)(kong)閉合(he)。凝固(gu)結束后,氮(dan)(dan)(dan)氣(qi)孔(kong)(kong)的(de)宏觀形貌類(lei)似于橢圓(yuan)形,與(yu)Wei等的(de)研究結果一(yi)致



二、氮微(wei)觀(guan)偏析對氮氣孔的(de)影響


  氮(dan)(dan)的(de)(de)(de)(de)分(fen)配系數較小(xiao),導致(zhi)液(ye)(ye)相(xiang)向固相(xiang)轉(zhuan)變的(de)(de)(de)(de)過程中(zhong)(zhong)(zhong)(zhong),固相(xiang)會將多(duo)余(yu)的(de)(de)(de)(de)氮(dan)(dan)轉(zhuan)移到殘(can)余(yu)液(ye)(ye)相(xiang)中(zhong)(zhong)(zhong)(zhong),形成(cheng)(cheng)(cheng)氮(dan)(dan)偏(pian)析。在(zai)氮(dan)(dan)偏(pian)析程度(du)逐(zhu)漸加重的(de)(de)(de)(de)過程中(zhong)(zhong)(zhong)(zhong),當(dang)殘(can)余(yu)液(ye)(ye)相(xiang)中(zhong)(zhong)(zhong)(zhong)氮(dan)(dan)質量分(fen)數超過其(qi)(qi)飽(bao)和(he)(he)度(du)時,極易形成(cheng)(cheng)(cheng)氮(dan)(dan)氣(qi)泡。隨著凝(ning)固的(de)(de)(de)(de)進(jin)行(xing),若氣(qi)泡無法上浮(fu)而(er)被(bei)捕獲,凝(ning)固結(jie)束后就會在(zai)鑄錠(ding)內(nei)(nei)部形成(cheng)(cheng)(cheng)氣(qi)孔。因(yin)此,凝(ning)固過程中(zhong)(zhong)(zhong)(zhong)氮(dan)(dan)偏(pian)析和(he)(he)溶解度(du)對鑄錠(ding)中(zhong)(zhong)(zhong)(zhong)最終(zhong)氮(dan)(dan)氣(qi)孔的(de)(de)(de)(de)形成(cheng)(cheng)(cheng)有至(zhi)關(guan)重要的(de)(de)(de)(de)作用。氮(dan)(dan)氣(qi)孔多(duo)數情況(kuang)下與(yu)疏(shu)松(song)縮(suo)孔共存,內(nei)(nei)壁(bi)凹凸不平呈(cheng)現裂紋狀(zhuang),且整個(ge)氣(qi)孔形狀(zhuang)不規則,如圖2-58所示(shi)。此類氣(qi)孔不僅與(yu)鋼液(ye)(ye)中(zhong)(zhong)(zhong)(zhong)氣(qi)泡的(de)(de)(de)(de)形成(cheng)(cheng)(cheng)有關(guan),還受凝(ning)固收縮(suo)等因(yin)素的(de)(de)(de)(de)影(ying)響(xiang),且多(duo)數分(fen)布于鑄錠(ding)心(xin)部,尤(you)其(qi)(qi)在(zai)中(zhong)(zhong)(zhong)(zhong)心(xin)等軸晶(jing)區(qu)。這主要由于中(zhong)(zhong)(zhong)(zhong)心(xin)等軸晶(jing)區(qu)內(nei)(nei)枝晶(jing)生(sheng)長較發達,容易形成(cheng)(cheng)(cheng)復(fu)雜的(de)(de)(de)(de)網狀(zhuang)結(jie)構,從而(er)將液(ye)(ye)相(xiang)分(fen)割成(cheng)(cheng)(cheng)無數個(ge)獨立的(de)(de)(de)(de)液(ye)(ye)相(xiang)區(qu)域,當(dang)發生(sheng)凝(ning)固收縮(suo)時,難以進(jin)行(xing)補(bu)縮(suo),在(zai)形成(cheng)(cheng)(cheng)疏(shu)松(song)縮(suo)孔的(de)(de)(de)(de)同時,局(ju)部鋼液(ye)(ye)靜壓力降低(di),促使氮(dan)(dan)從殘(can)余(yu)液(ye)(ye)相(xiang)中(zhong)(zhong)(zhong)(zhong)析出,從而(er)形成(cheng)(cheng)(cheng)了氮(dan)(dan)氣(qi)孔和(he)(he)疏(shu)松(song)縮(suo)孔共存的(de)(de)(de)(de)宏(hong)觀缺陷。


圖 58.jpg



  平衡凝固時(shi),19Cr14Mn0.9N含(han)氮(dan)(dan)奧氏體(ti)(ti)不(bu)銹(xiu)鋼殘余液(ye)相(xiang)中(zhong)(zhong)氮(dan)(dan)偏析與體(ti)(ti)系氮(dan)(dan)溶解(jie)度(du)的(de)(de)差(cha)值如圖2-59所示。凝固初(chu)期鐵素體(ti)(ti)阱(jing)(ferrite trap)的(de)(de)形(xing)(xing)成,導(dao)致氮(dan)(dan)溶解(jie)度(du)的(de)(de)降(jiang)低,進而使(shi)氮(dan)(dan)偏析與體(ti)(ti)系氮(dan)(dan)溶解(jie)度(du)差(cha)值呈現(xian)出略(lve)微增(zeng)大的(de)(de)趨勢(shi)。但在后續凝固過程中(zhong)(zhong),隨(sui)著(zhu)鐵素體(ti)(ti)阱(jing)的(de)(de)消(xiao)失以及富氮(dan)(dan)奧氏體(ti)(ti)相(xiang)的(de)(de)不(bu)斷形(xing)(xing)成,差(cha)值減小;在整個凝固過程中(zhong)(zhong)差(cha)值始終較(jiao)(jiao)小,且變(bian)化幅度(du)較(jiao)(jiao)窄。對(dui)于19Cr14Mn0.9N 含(han)氮(dan)(dan)奧氏體(ti)(ti)不(bu)銹(xiu)鋼,液(ye)相(xiang)中(zhong)(zhong)氮(dan)(dan)氣(qi)(qi)泡(pao)的(de)(de)形(xing)(xing)成趨勢(shi)較(jiao)(jiao)小,難以在鑄錠(ding)內形(xing)(xing)成獨立內壁光(guang)滑的(de)(de)規則氮(dan)(dan)氣(qi)(qi)孔。


  此外,目前有人對(dui)(dui)奧(ao)氏體鋼(gang)(gang)凝(ning)固過(guo)程(cheng)中(zhong)(zhong)(zhong)氮(dan)(dan)(dan)氣孔(kong)的(de)形成(cheng)(cheng)進行了(le)大(da)量(liang)研(yan)究(jiu),如Yang和(he)Leel901研(yan)究(jiu)了(le)奧(ao)氏體鋼(gang)(gang)16Cr3NixMn(x=9和(he)11)凝(ning)固過(guo)程(cheng)中(zhong)(zhong)(zhong)壓力和(he)初始氮(dan)(dan)(dan)質量(liang)分數等因素對(dui)(dui)氮(dan)(dan)(dan)氣孔(kong)形成(cheng)(cheng)的(de)影(ying)響(xiang)規(gui)律,并建立了(le)相應(ying)的(de)預(yu)測(ce)模型。Ridolfi和(he)Tassal[84]分析(xi)(xi)了(le)氮(dan)(dan)(dan)偏(pian)析(xi)(xi)、合(he)金元素、冷卻(que)速率以及(ji)枝晶間(jian)距(ju)對(dui)(dui)奧(ao)氏體鋼(gang)(gang)中(zhong)(zhong)(zhong)氮(dan)(dan)(dan)氣孔(kong)的(de)影(ying)響(xiang)規(gui)律,并揭示(shi)了(le)奧(ao)氏體鋼(gang)(gang)中(zhong)(zhong)(zhong)氮(dan)(dan)(dan)氣孔(kong)形成(cheng)(cheng)機理。然而(er),目前對(dui)(dui)于雙相鋼(gang)(gang)中(zhong)(zhong)(zhong)氮(dan)(dan)(dan)氣孔(kong)形成(cheng)(cheng)的(de)研(yan)究(jiu)較少,且(qie)(qie)主要集中(zhong)(zhong)(zhong)在(zai)合(he)金元素、鑄造方式、冷卻(que)速率等因素對(dui)(dui)氮(dan)(dan)(dan)氣孔(kong)影(ying)響(xiang)規(gui)律的(de)研(yan)究(jiu),鮮有對(dui)(dui)雙相鋼(gang)(gang)中(zhong)(zhong)(zhong)氮(dan)(dan)(dan)氣孔(kong)形成(cheng)(cheng)機理的(de)報(bao)道。以21.5Cr5Mn1.5Ni0.25N含氮(dan)(dan)(dan)雙相鋼(gang)(gang)為例(li),氮(dan)(dan)(dan)偏(pian)析(xi)(xi)與溶解度的(de)差值(zhi)在(zai)整個凝(ning)固過(guo)程(cheng)中(zhong)(zhong)(zhong)的(de)變(bian)化趨勢,如圖(tu)2-59所(suo)示(shi)。隨著凝(ning)固的(de)進行,氮(dan)(dan)(dan)偏(pian)析(xi)(xi)始終大(da)于氮(dan)(dan)(dan)溶解度,且(qie)(qie)差值(zhi)呈現出快速增大(da)的(de)趨勢。因此,在(zai)21.5Cr5Mn1.5Ni0.25N 含氮(dan)(dan)(dan)雙相鋼(gang)(gang)凝(ning)固過(guo)程(cheng)中(zhong)(zhong)(zhong),氮(dan)(dan)(dan)偏(pian)析(xi)(xi)嚴重,殘余液相內(nei)氮(dan)(dan)(dan)氣泡形成(cheng)(cheng)趨勢較大(da),明顯高(gao)于19Cr14Mn0.9N含氮(dan)(dan)(dan)奧(ao)氏體不銹鋼(gang)(gang)。


圖 59.jpg

  氮(dan)氣(qi)泡(pao)(pao)形成和(he)長大具(ju)有(you)重(zhong)要的(de)(de)作用(圖2-60).其中(zhong),σ為(wei)氣(qi)液界面(mian)的(de)(de)表面(mian)張力(li),r為(wei)氣(qi)泡(pao)(pao)半徑(jing)。結合經典形核理論,氮(dan)氣(qi)泡(pao)(pao)在鋼液中(zhong)穩定存在的(de)(de)必要條件為(wei)氣(qi)泡(pao)(pao)內壓力(li)大于作用于氣(qi)泡(pao)(pao)的(de)(de)所(suo)有(you)壓力(li)之和(he),即


圖 60.jpg


  式中(zhong),Aso由(you)凝固過程(cheng)中(zhong)除氮(dan)以外其(qi)他合(he)金(jin)元素的(de)(de)微觀(guan)偏析(xi)(xi)進行(xing)計算(suan)(suan),其(qi)值隨著枝晶間殘余(yu)液相中(zhong)氮(dan)溶解度的(de)(de)增加(jia)而減(jian)小(xiao),表(biao)征(zheng)了枝晶間殘余(yu)液相中(zhong)氮(dan)溶解度對(dui)氮(dan)氣(qi)泡(pao)形(xing)成(cheng)的(de)(de)影響程(cheng)度;Ase表(biao)征(zheng)了枝晶間氮(dan)偏析(xi)(xi)對(dui)氮(dan)氣(qi)泡(pao)形(xing)成(cheng)的(de)(de)影響程(cheng)度,可由(you)凝固過程(cheng)中(zhong)枝晶間殘余(yu)液相中(zhong)氮(dan)偏析(xi)(xi)計算(suan)(suan)獲得,其(qi)值隨著氮(dan)偏析(xi)(xi)的(de)(de)增大(da)而增大(da)。此外,用(yong)于計算(suan)(suan)Aso和Ase時所(suo)需的(de)(de)合(he)金(jin)元素偏析(xi)(xi)均(jun)由(you)鋼凝固相變(bian)所(suo)致。


  氮(dan)氣(qi)泡(pao)的形(xing)核(he)和(he)長大過(guo)程復雜,且影響(xiang)因素(su)眾多(duo),包括凝(ning)(ning)(ning)固(gu)收縮(suo)、冶煉環境以及坩堝材質等(deng)。因此(ci),很難采用(yong)Pg值精確預測凝(ning)(ning)(ning)固(gu)過(guo)程中氮(dan)氣(qi)泡(pao)的形(xing)成(cheng)(cheng)和(he)長大。然而基于Yang等(deng)的實驗(yan)研究[70,77],在(zai)評估凝(ning)(ning)(ning)固(gu)壓(ya)力(li)、合金成(cheng)(cheng)分等(deng)因素(su)對氮(dan)氣(qi)泡(pao)形(xing)成(cheng)(cheng)的影響(xiang)程度時(shi),Pg起關鍵作用(yong)。實際(ji)凝(ning)(ning)(ning)固(gu)過(guo)程介(jie)于平衡凝(ning)(ning)(ning)固(gu)(固(gu)/液相中溶(rong)質完全擴散(san)(san))和(he)Scheil凝(ning)(ning)(ning)固(gu)(固(gu)相無(wu)溶(rong)質擴散(san)(san),液相中完全擴散(san)(san))之間(jian)70].因此(ci),可分別計算平衡凝(ning)(ning)(ning)固(gu)和(he)Scheil凝(ning)(ning)(ning)固(gu)過(guo)程中的Aso、Ase和(he)Pg,闡明實際(ji)凝(ning)(ning)(ning)固(gu)過(guo)程中壓(ya)力(li)等(deng)因素(su)對氮(dan)氣(qi)泡(pao)形(xing)成(cheng)(cheng)的影響(xiang)規律(lv)。


  現以21.5Cr5Mn1.5Ni0.25N含氮(dan)雙相(xiang)鋼(gang)D1鑄錠(ding)為例(li),對凝固過程中Aso、Ase和(he)(he)P8的變(bian)化趨勢進行計(ji)算。圖2-61描述(shu)了ΔAso(=Asa-Aso,0)和(he)(he)AAse(=Ase-Ase,o)隨固相(xiang)質量分數的變(bian)化趨勢(Aso,0和(he)(he)Asc,0分別為D1鑄錠(ding)凝固時Aso和(he)(he)Ase的初始值)。


  在(zai)平衡凝(ning)(ning)固(gu)(gu)(gu)(gu)和(he)(he)(he)Scheil凝(ning)(ning)固(gu)(gu)(gu)(gu)過(guo)程(cheng)中(zhong),ΔAso的(de)最(zui)小值分(fen)別(bie)(bie)為(wei)-0.145和(he)(he)(he)-0.397,與(yu)(yu)此相(xiang)對(dui)(dui)應的(de)ΔAse值最(zui)大(da)(da),分(fen)別(bie)(bie)為(wei)0.68和(he)(he)(he)0.92.在(zai)整(zheng)個凝(ning)(ning)固(gu)(gu)(gu)(gu)過(guo)程(cheng)中(zhong),由于ΔAse與(yu)(yu)ΔAso之和(he)(he)(he)始終大(da)(da)于零,因而(er)枝(zhi)晶(jing)間殘余液相(xiang)中(zhong)氮(dan)(dan)偏析對(dui)(dui)D1 鑄(zhu)錠(ding)凝(ning)(ning)固(gu)(gu)(gu)(gu)過(guo)程(cheng)中(zhong)氮(dan)(dan)氣泡形(xing)成(cheng)的(de)影(ying)響大(da)(da)于氮(dan)(dan)溶解度,起(qi)主(zhu)導(dao)作用。此外,在(zai)整(zheng)個凝(ning)(ning)固(gu)(gu)(gu)(gu)過(guo)程(cheng)中(zhong),P8變(bian)化趨勢(shi)如圖(tu)2-62所示,其(qi)變(bian)化規(gui)(gui)律與(yu)(yu)Young等。的(de)研(yan)究結(jie)果一致,Pg的(de)最(zui)大(da)(da)值Pg與(yu)(yu)Ase+Aso的(de)最(zui)大(da)(da)值相(xiang)對(dui)(dui)應,且在(zai)平衡凝(ning)(ning)固(gu)(gu)(gu)(gu)和(he)(he)(he) Scheil 凝(ning)(ning)固(gu)(gu)(gu)(gu)過(guo)程(cheng)中(zhong)分(fen)別(bie)(bie)為(wei)0.63MPa和(he)(he)(he)0.62MPa.此外,可(ke)通過(guo)對(dui)(dui)比不同鑄(zhu)錠(ding)中(zhong)的(de)探討凝(ning)(ning)固(gu)(gu)(gu)(gu)壓力、初始氮(dan)(dan)質量分(fen)數以及合金(jin)元素(su)(鉻和(he)(he)(he)錳)等對(dui)(dui)液相(xiang)中(zhong)氮(dan)(dan)氣泡形(xing)成(cheng)的(de)影(ying)響,進(jin)而(er)明晰各因素(su)對(dui)(dui)氮(dan)(dan)氣孔形(xing)成(cheng)的(de)影(ying)響規(gui)(gui)律。


圖 61.jpg


聯系方式.jpg