根據相(xiang)圖,多(duo)數(shu)合(he)金(jin)元素在(zai)固(gu)(gu)(gu)相(xiang)中的(de)溶(rong)(rong)解度(du)要(yao)低(di)于液相(xiang),因此(ci)在(zai)凝固(gu)(gu)(gu)過程中溶(rong)(rong)質(zhi)原子不斷被排出到液相(xiang),這種固(gu)(gu)(gu)液界面兩側溶(rong)(rong)質(zhi)濃度(du)的(de)差異導致(zhi)合(he)金(jin)凝固(gu)(gu)(gu)后(hou)(hou)溶(rong)(rong)質(zhi)元素成(cheng)(cheng)(cheng)分不均勻(yun)(yun)性,稱作偏析(xi)(xi)(xi)(xi)。溶(rong)(rong)質(zhi)元素分布不均勻(yun)(yun)性發生(sheng)(sheng)在(zai)微(wei)(wei)觀(guan)(guan)(guan)結構形(xing)成(cheng)(cheng)(cheng)范圍(wei)(wei)內(nei)(有(you)10~100μm的(de)樹狀枝晶),此(ci)時(shi)為(wei)微(wei)(wei)觀(guan)(guan)(guan)偏析(xi)(xi)(xi)(xi)。溶(rong)(rong)質(zhi)元素通(tong)過對(dui)(dui)流傳質(zhi)等質(zhi)量傳輸,將(jiang)導致(zhi)大范圍(wei)(wei)內(nei)成(cheng)(cheng)(cheng)分不均勻(yun)(yun)性,即(ji)形(xing)成(cheng)(cheng)(cheng)了宏觀(guan)(guan)(guan)偏析(xi)(xi)(xi)(xi)。宏觀(guan)(guan)(guan)偏析(xi)(xi)(xi)(xi)可以認為(wei)是(shi)由(you)凝固(gu)(gu)(gu)過程中液體和(he)固(gu)(gu)(gu)體相(xiang)對(dui)(dui)運(yun)動和(he)溶(rong)(rong)質(zhi)再分配過程共(gong)同導致(zhi)的(de)。此(ci)外,在(zai)凝固(gu)(gu)(gu)早(zao)期所(suo)形(xing)成(cheng)(cheng)(cheng)的(de)固(gu)(gu)(gu)體相(xiang)或(huo)非金(jin)屬夾雜的(de)漂浮和(he)下沉也會(hui)造(zao)成(cheng)(cheng)(cheng)宏觀(guan)(guan)(guan)偏析(xi)(xi)(xi)(xi)。一般認為(wei)在(zai)合(he)金(jin)鑄(zhu)件(jian)或(huo)鑄(zhu)錠內(nei),從(cong)幾(ji)毫米(mi)到幾(ji)厘米(mi)甚至(zhi)幾(ji)米(mi)范圍(wei)(wei)內(nei)濃度(du)變化(hua)為(wei)宏觀(guan)(guan)(guan)偏析(xi)(xi)(xi)(xi)。因為(wei)溶(rong)(rong)質(zhi)在(zai)固(gu)(gu)(gu)態中的(de)擴散系數(shu)很低(di),而(er)成(cheng)(cheng)(cheng)分不均勻(yun)(yun)性范圍(wei)(wei)又很大,所(suo)以在(zai)凝固(gu)(gu)(gu)完成(cheng)(cheng)(cheng)后(hou)(hou),宏觀(guan)(guan)(guan)偏析(xi)(xi)(xi)(xi)很難(nan)通(tong)過加工處理來消除,因此(ci)抑制宏觀(guan)(guan)(guan)偏析(xi)(xi)(xi)(xi)的(de)產生(sheng)(sheng)主要(yao)是(shi)對(dui)(dui)工藝(yi)參數(shu)進行優(you)化(hua),如控制合(he)金(jin)成(cheng)(cheng)(cheng)分、施加外力場(chang)(磁場(chang)等)、優(you)化(hua)鑄(zhu)錠幾(ji)何形(xing)狀、適當加大冷卻速率等。


  宏(hong)觀偏(pian)(pian)析(xi)(xi)(xi)(xi)(xi)是(shi)大范圍內的(de)(de)(de)(de)(de)(de)成(cheng)分(fen)(fen)不均勻現(xian)象,按其(qi)(qi)表現(xian)形(xing)式可(ke)分(fen)(fen)為正(zheng)(zheng)(zheng)偏(pian)(pian)析(xi)(xi)(xi)(xi)(xi)、反(fan)(fan)(fan)偏(pian)(pian)析(xi)(xi)(xi)(xi)(xi)和比重偏(pian)(pian)析(xi)(xi)(xi)(xi)(xi)等。①. 正(zheng)(zheng)(zheng)偏(pian)(pian)析(xi)(xi)(xi)(xi)(xi):對(dui)平(ping)衡(heng)分(fen)(fen)配系(xi)數o<1的(de)(de)(de)(de)(de)(de)合金(jin)(jin)(jin)系(xi)鑄錠(ding)先凝(ning)(ning)固的(de)(de)(de)(de)(de)(de)部(bu)分(fen)(fen),其(qi)(qi)溶(rong)(rong)質(zhi)含量低(di)于(yu)(yu)后(hou)(hou)凝(ning)(ning)固的(de)(de)(de)(de)(de)(de)部(bu)分(fen)(fen)。對(dui)ko>1的(de)(de)(de)(de)(de)(de)合金(jin)(jin)(jin)系(xi)則正(zheng)(zheng)(zheng)好相(xiang)(xiang)反(fan)(fan)(fan),其(qi)(qi)偏(pian)(pian)析(xi)(xi)(xi)(xi)(xi)程度與(yu)凝(ning)(ning)固速(su)率、液(ye)(ye)體對(dui)流(liu)(liu)(liu)(liu)以及溶(rong)(rong)質(zhi)擴散等條件有(you)關。②. 反(fan)(fan)(fan)偏(pian)(pian)析(xi)(xi)(xi)(xi)(xi):在(zai)ko<1的(de)(de)(de)(de)(de)(de)合金(jin)(jin)(jin)鑄錠(ding)中,其(qi)(qi)外層溶(rong)(rong)質(zhi)元(yuan)素(su)高于(yu)(yu)內部(bu),和正(zheng)(zheng)(zheng)偏(pian)(pian)析(xi)(xi)(xi)(xi)(xi)相(xiang)(xiang)反(fan)(fan)(fan),故稱(cheng)為反(fan)(fan)(fan)偏(pian)(pian)析(xi)(xi)(xi)(xi)(xi)。③. 比重偏(pian)(pian)析(xi)(xi)(xi)(xi)(xi):是(shi)由(you)合金(jin)(jin)(jin)凝(ning)(ning)固時形(xing)成(cheng)的(de)(de)(de)(de)(de)(de)初(chu)(chu)晶(jing)相(xiang)(xiang)和溶(rong)(rong)液(ye)(ye)之(zhi)間的(de)(de)(de)(de)(de)(de)比重顯著差別引起的(de)(de)(de)(de)(de)(de)一(yi)種宏(hong)觀偏(pian)(pian)析(xi)(xi)(xi)(xi)(xi),主要(yao)存在(zai)于(yu)(yu)共晶(jing)系(xi)和偏(pian)(pian)晶(jing)系(xi)合金(jin)(jin)(jin)中。如圖2-49所示,由(you)于(yu)(yu)溶(rong)(rong)質(zhi)元(yuan)素(su)濃度相(xiang)(xiang)對(dui)低(di)的(de)(de)(de)(de)(de)(de)等軸(zhou)晶(jing)沉積導致在(zai)鑄錠(ding)的(de)(de)(de)(de)(de)(de)底部(bu)出現(xian)負偏(pian)(pian)析(xi)(xi)(xi)(xi)(xi);由(you)于(yu)(yu)浮力和在(zai)凝(ning)(ning)固的(de)(de)(de)(de)(de)(de)最(zui)后(hou)(hou)階段收縮(suo)所引起的(de)(de)(de)(de)(de)(de)晶(jing)間流(liu)(liu)(liu)(liu)動(dong),在(zai)頂部(bu)會出現(xian)很嚴(yan)重的(de)(de)(de)(de)(de)(de)正(zheng)(zheng)(zheng)偏(pian)(pian)析(xi)(xi)(xi)(xi)(xi)(頂部(bu)偏(pian)(pian)析(xi)(xi)(xi)(xi)(xi))。A型偏(pian)(pian)析(xi)(xi)(xi)(xi)(xi)是(shi)溶(rong)(rong)質(zhi)富集的(de)(de)(de)(de)(de)(de)等軸(zhou)晶(jing)帶,由(you)溶(rong)(rong)質(zhi)受浮力作用流(liu)(liu)(liu)(liu)動(dong)穿過(guo)柱狀(zhuang)(zhuang)(zhuang)晶(jing)區,其(qi)(qi)方向與(yu)等溫(wen)線移動(dong)速(su)度方向一(yi)致但速(su)率更快所導致。A型偏(pian)(pian)析(xi)(xi)(xi)(xi)(xi)形(xing)狀(zhuang)(zhuang)(zhuang)與(yu)流(liu)(liu)(liu)(liu)動(dong)類型有(you)關。V型偏(pian)(pian)析(xi)(xi)(xi)(xi)(xi)位于(yu)(yu)鑄錠(ding)中心(xin),源于(yu)(yu)中心(xin)形(xing)成(cheng)等軸(zhou)晶(jing)區和容易斷裂(lie)的(de)(de)(de)(de)(de)(de)連接疏松的(de)(de)(de)(de)(de)(de)網狀(zhuang)(zhuang)(zhuang)物的(de)(de)(de)(de)(de)(de)形(xing)成(cheng),之(zhi)后(hou)(hou)裂(lie)紋沿(yan)切應力面(mian)展(zhan)開為V型,并且充滿了富集元(yuan)素(su)的(de)(de)(de)(de)(de)(de)液(ye)(ye)相(xiang)(xiang)。而沿(yan)鑄錠(ding)側壁分(fen)(fen)布的(de)(de)(de)(de)(de)(de)帶狀(zhuang)(zhuang)(zhuang)偏(pian)(pian)析(xi)(xi)(xi)(xi)(xi)則是(shi)由(you)凝(ning)(ning)固過(guo)程初(chu)(chu)期的(de)(de)(de)(de)(de)(de)不穩定傳(chuan)熱(re)和流(liu)(liu)(liu)(liu)動(dong)導致的(de)(de)(de)(de)(de)(de)。


圖 49.jpg


  對于宏觀(guan)(guan)(guan)偏(pian)析(xi)(xi)(xi)的(de)研究(jiu)主要有實驗(yan)(yan)檢測(ce)和(he)模(mo)擬(ni)計算(suan)(suan)兩種手段。實驗(yan)(yan)檢測(ce)包括硫(liu)印檢驗(yan)(yan)法(fa)、原(yuan)位分析(xi)(xi)(xi)法(fa)、火(huo)花放電(dian)原(yuan)子發射光譜法(fa)、鉆孔取樣法(fa)以及化學(xue)分析(xi)(xi)(xi)法(fa)等。模(mo)擬(ni)計算(suan)(suan)是(shi)通過(guo)數值(zhi)求解能(neng)(neng)量(liang)(liang)、動(dong)量(liang)(liang)以及溶質(zhi)傳(chuan)輸等數學(xue)模(mo)型,進而探討元(yuan)素成分不(bu)均勻性的(de)方法(fa);進入20世(shi)紀后,人們對凝固過(guo)程(cheng)中的(de)宏觀(guan)(guan)(guan)偏(pian)析(xi)(xi)(xi)現(xian)象進行(xing)了(le)大量(liang)(liang)系統的(de)研究(jiu)。Flemings研究(jiu)表明(ming)鑄(zhu)錠中多種不(bu)同的(de)宏觀(guan)(guan)(guan)偏(pian)析(xi)(xi)(xi)都可由凝固時的(de)傳(chuan)熱、流動(dong)和(he)傳(chuan)質(zhi)過(guo)程(cheng)來(lai)定量(liang)(liang)描述(shu),從而為(wei)宏觀(guan)(guan)(guan)偏(pian)析(xi)(xi)(xi)的(de)定量(liang)(liang)計算(suan)(suan)提(ti)供可能(neng)(neng)性,隨著計算(suan)(suan)機計算(suan)(suan)能(neng)(neng)力迅猛(meng)提(ti)升,宏觀(guan)(guan)(guan)偏(pian)析(xi)(xi)(xi)的(de)模(mo)擬(ni)計算(suan)(suan)得(de)到了(le)迅速(su)發展,主要分為(wei)多區域法(fa)和(he)連續(xu)介質(zhi)法(fa)等。


  對于高氮不銹鋼,改善氮偏析以及消除氣孔等凝固缺陷,優化制備工藝制度,是高氮奧氏體不銹鋼制備技術中亟待解決的難題之一。氮作為重要合金元素之一,其偏析程度對材料強度、韌性、抗蠕變性、耐磨性和耐腐蝕等性能的均勻性至關重要,直接影響材料的服役壽命。與高氮不銹鋼中鉻、錳等其他元素相比,氮的分配系數較小,氮偏析嚴重,易形成氮氣泡,凝固末了殘留在鑄錠中形成氮氣孔等凝固缺陷,甚至導致材料直接報廢,因此氮偏析的控制對高氮不銹鋼制備而言至關重要。不同壓力和不同初始氮含量下21.5Cr5Mn1.5Ni0.25N含氮雙相鋼中氮偏析導致氮氣孔的形貌如圖2-50所示,其中D1、D3和D5分別在0.04MPa、0.1MPa和0.13MPa下完成凝固,不同氮質量分數的D2(0.25%N)、D3(0.26%N)和D4(0.29%N)均在0.1MPa下凝固。





聯系方式.jpg