根據相(xiang)圖,多數(shu)合(he)金(jin)元素(su)在(zai)(zai)(zai)固相(xiang)中的(de)(de)溶(rong)解度要低于液(ye)(ye)相(xiang),因此在(zai)(zai)(zai)凝固過(guo)程中溶(rong)質(zhi)(zhi)(zhi)(zhi)原(yuan)子不(bu)斷被排出到(dao)液(ye)(ye)相(xiang),這種固液(ye)(ye)界面兩(liang)側溶(rong)質(zhi)(zhi)(zhi)(zhi)濃度的(de)(de)差異導致(zhi)合(he)金(jin)凝固后溶(rong)質(zhi)(zhi)(zhi)(zhi)元素(su)成分(fen)(fen)不(bu)均(jun)勻性,稱作偏(pian)(pian)析(xi)。溶(rong)質(zhi)(zhi)(zhi)(zhi)元素(su)分(fen)(fen)布(bu)不(bu)均(jun)勻性發生(sheng)在(zai)(zai)(zai)微觀結構形成范圍(wei)內(nei)(有10~100μm的(de)(de)樹狀(zhuang)枝(zhi)晶),此時為(wei)(wei)微觀偏(pian)(pian)析(xi)。溶(rong)質(zhi)(zhi)(zhi)(zhi)元素(su)通過(guo)對流(liu)傳(chuan)質(zhi)(zhi)(zhi)(zhi)等(deng)質(zhi)(zhi)(zhi)(zhi)量傳(chuan)輸(shu),將導致(zhi)大(da)范圍(wei)內(nei)成分(fen)(fen)不(bu)均(jun)勻性,即形成了宏(hong)觀偏(pian)(pian)析(xi)。宏(hong)觀偏(pian)(pian)析(xi)可以認(ren)為(wei)(wei)是(shi)(shi)由(you)凝固過(guo)程中液(ye)(ye)體和固體相(xiang)對運(yun)動和溶(rong)質(zhi)(zhi)(zhi)(zhi)再分(fen)(fen)配過(guo)程共同(tong)導致(zhi)的(de)(de)。此外(wai),在(zai)(zai)(zai)凝固早(zao)期所形成的(de)(de)固體相(xiang)或非金(jin)屬夾(jia)雜的(de)(de)漂浮和下沉(chen)也會造成宏(hong)觀偏(pian)(pian)析(xi)。一般(ban)認(ren)為(wei)(wei)在(zai)(zai)(zai)合(he)金(jin)鑄件或鑄錠內(nei),從幾毫米(mi)到(dao)幾厘米(mi)甚至幾米(mi)范圍(wei)內(nei)濃度變(bian)化為(wei)(wei)宏(hong)觀偏(pian)(pian)析(xi)。因為(wei)(wei)溶(rong)質(zhi)(zhi)(zhi)(zhi)在(zai)(zai)(zai)固態中的(de)(de)擴散系數(shu)很(hen)低,而(er)成分(fen)(fen)不(bu)均(jun)勻性范圍(wei)又很(hen)大(da),所以在(zai)(zai)(zai)凝固完成后,宏(hong)觀偏(pian)(pian)析(xi)很(hen)難通過(guo)加(jia)工處(chu)理來消除,因此抑制宏(hong)觀偏(pian)(pian)析(xi)的(de)(de)產生(sheng)主要是(shi)(shi)對工藝參數(shu)進行優(you)化,如控(kong)制合(he)金(jin)成分(fen)(fen)、施加(jia)外(wai)力場(磁(ci)場等(deng))、優(you)化鑄錠幾何(he)形狀(zhuang)、適當(dang)加(jia)大(da)冷卻速率(lv)等(deng)。


  宏(hong)觀(guan)偏(pian)(pian)(pian)析(xi)(xi)是(shi)(shi)大范(fan)圍(wei)內(nei)的(de)(de)(de)(de)成分(fen)(fen)(fen)不均勻現(xian)象,按其表現(xian)形式可分(fen)(fen)(fen)為(wei)(wei)正(zheng)(zheng)(zheng)偏(pian)(pian)(pian)析(xi)(xi)、反(fan)(fan)偏(pian)(pian)(pian)析(xi)(xi)和(he)比(bi)(bi)重(zhong)(zhong)偏(pian)(pian)(pian)析(xi)(xi)等(deng)(deng)。①. 正(zheng)(zheng)(zheng)偏(pian)(pian)(pian)析(xi)(xi):對平衡分(fen)(fen)(fen)配系(xi)(xi)數(shu)o<1的(de)(de)(de)(de)合(he)金(jin)(jin)系(xi)(xi)鑄錠先凝固(gu)(gu)的(de)(de)(de)(de)部(bu)(bu)分(fen)(fen)(fen),其溶質(zhi)(zhi)含量低于(yu)(yu)后凝固(gu)(gu)的(de)(de)(de)(de)部(bu)(bu)分(fen)(fen)(fen)。對ko>1的(de)(de)(de)(de)合(he)金(jin)(jin)系(xi)(xi)則(ze)(ze)正(zheng)(zheng)(zheng)好相(xiang)反(fan)(fan),其偏(pian)(pian)(pian)析(xi)(xi)程(cheng)度與(yu)凝固(gu)(gu)速率、液(ye)體對流(liu)以及溶質(zhi)(zhi)擴(kuo)散等(deng)(deng)條件有(you)關(guan)(guan)。②. 反(fan)(fan)偏(pian)(pian)(pian)析(xi)(xi):在ko<1的(de)(de)(de)(de)合(he)金(jin)(jin)鑄錠中(zhong),其外層溶質(zhi)(zhi)元(yuan)(yuan)素(su)(su)高于(yu)(yu)內(nei)部(bu)(bu),和(he)正(zheng)(zheng)(zheng)偏(pian)(pian)(pian)析(xi)(xi)相(xiang)反(fan)(fan),故稱為(wei)(wei)反(fan)(fan)偏(pian)(pian)(pian)析(xi)(xi)。③. 比(bi)(bi)重(zhong)(zhong)偏(pian)(pian)(pian)析(xi)(xi):是(shi)(shi)由(you)(you)合(he)金(jin)(jin)凝固(gu)(gu)時形成的(de)(de)(de)(de)初晶(jing)(jing)(jing)相(xiang)和(he)溶液(ye)之間(jian)的(de)(de)(de)(de)比(bi)(bi)重(zhong)(zhong)顯著(zhu)差別引(yin)起的(de)(de)(de)(de)一(yi)種宏(hong)觀(guan)偏(pian)(pian)(pian)析(xi)(xi),主要(yao)存在于(yu)(yu)共晶(jing)(jing)(jing)系(xi)(xi)和(he)偏(pian)(pian)(pian)晶(jing)(jing)(jing)系(xi)(xi)合(he)金(jin)(jin)中(zhong)。如(ru)圖2-49所(suo)示(shi),由(you)(you)于(yu)(yu)溶質(zhi)(zhi)元(yuan)(yuan)素(su)(su)濃度相(xiang)對低的(de)(de)(de)(de)等(deng)(deng)軸(zhou)晶(jing)(jing)(jing)沉積導(dao)致(zhi)(zhi)在鑄錠的(de)(de)(de)(de)底部(bu)(bu)出現(xian)負偏(pian)(pian)(pian)析(xi)(xi);由(you)(you)于(yu)(yu)浮力和(he)在凝固(gu)(gu)的(de)(de)(de)(de)最后階段收縮所(suo)引(yin)起的(de)(de)(de)(de)晶(jing)(jing)(jing)間(jian)流(liu)動,在頂部(bu)(bu)會出現(xian)很嚴重(zhong)(zhong)的(de)(de)(de)(de)正(zheng)(zheng)(zheng)偏(pian)(pian)(pian)析(xi)(xi)(頂部(bu)(bu)偏(pian)(pian)(pian)析(xi)(xi))。A型(xing)(xing)偏(pian)(pian)(pian)析(xi)(xi)是(shi)(shi)溶質(zhi)(zhi)富集(ji)的(de)(de)(de)(de)等(deng)(deng)軸(zhou)晶(jing)(jing)(jing)帶(dai),由(you)(you)溶質(zhi)(zhi)受浮力作用流(liu)動穿(chuan)過柱狀(zhuang)晶(jing)(jing)(jing)區,其方(fang)向與(yu)等(deng)(deng)溫線(xian)移動速度方(fang)向一(yi)致(zhi)(zhi)但速率更快所(suo)導(dao)致(zhi)(zhi)。A型(xing)(xing)偏(pian)(pian)(pian)析(xi)(xi)形狀(zhuang)與(yu)流(liu)動類型(xing)(xing)有(you)關(guan)(guan)。V型(xing)(xing)偏(pian)(pian)(pian)析(xi)(xi)位于(yu)(yu)鑄錠中(zhong)心,源于(yu)(yu)中(zhong)心形成等(deng)(deng)軸(zhou)晶(jing)(jing)(jing)區和(he)容易(yi)斷裂的(de)(de)(de)(de)連(lian)接疏松的(de)(de)(de)(de)網狀(zhuang)物的(de)(de)(de)(de)形成,之后裂紋沿切應力面展開為(wei)(wei)V型(xing)(xing),并且充滿了富集(ji)元(yuan)(yuan)素(su)(su)的(de)(de)(de)(de)液(ye)相(xiang)。而(er)沿鑄錠側壁分(fen)(fen)(fen)布的(de)(de)(de)(de)帶(dai)狀(zhuang)偏(pian)(pian)(pian)析(xi)(xi)則(ze)(ze)是(shi)(shi)由(you)(you)凝固(gu)(gu)過程(cheng)初期的(de)(de)(de)(de)不穩定傳熱(re)和(he)流(liu)動導(dao)致(zhi)(zhi)的(de)(de)(de)(de)。


圖 49.jpg


  對于宏觀(guan)(guan)偏(pian)析的(de)(de)研(yan)(yan)究主要有實驗檢測和(he)模擬計(ji)(ji)算(suan)(suan)(suan)兩種手段(duan)。實驗檢測包括硫印檢驗法、原(yuan)位分(fen)析法、火花放電原(yuan)子發(fa)射光譜法、鉆孔取樣法以及(ji)化學(xue)分(fen)析法等。模擬計(ji)(ji)算(suan)(suan)(suan)是通(tong)過(guo)數值求解(jie)能(neng)量(liang)(liang)、動(dong)量(liang)(liang)以及(ji)溶(rong)質(zhi)傳輸等數學(xue)模型,進(jin)而(er)(er)探討元素成分(fen)不均(jun)勻(yun)性的(de)(de)方法;進(jin)入(ru)20世紀后,人(ren)們對凝固(gu)過(guo)程中的(de)(de)宏觀(guan)(guan)偏(pian)析現象進(jin)行了大量(liang)(liang)系統的(de)(de)研(yan)(yan)究。Flemings研(yan)(yan)究表明鑄錠中多種不同的(de)(de)宏觀(guan)(guan)偏(pian)析都可由凝固(gu)時(shi)的(de)(de)傳熱(re)、流動(dong)和(he)傳質(zhi)過(guo)程來定量(liang)(liang)描(miao)述,從而(er)(er)為宏觀(guan)(guan)偏(pian)析的(de)(de)定量(liang)(liang)計(ji)(ji)算(suan)(suan)(suan)提供(gong)可能(neng)性,隨著(zhu)計(ji)(ji)算(suan)(suan)(suan)機計(ji)(ji)算(suan)(suan)(suan)能(neng)力迅猛提升,宏觀(guan)(guan)偏(pian)析的(de)(de)模擬計(ji)(ji)算(suan)(suan)(suan)得到(dao)了迅速(su)發(fa)展,主要分(fen)為多區域法和(he)連(lian)續(xu)介(jie)質(zhi)法等。


  對于高氮不銹鋼,改善氮偏析以及消除氣孔等凝固缺陷,優化制備工藝制度,是高氮奧氏體不銹鋼制備技術中亟待解決的難題之一。氮作為重要合金元素之一,其偏析程度對材料強度、韌性、抗蠕變性、耐磨性和耐腐蝕等性能的均勻性至關重要,直接影響材料的服役壽命。與高氮不銹鋼中鉻、錳等其他元素相比,氮的分配系數較小,氮偏析嚴重,易形成氮氣泡,凝固末了殘留在鑄錠中形成氮氣孔等凝固缺陷,甚至導致材料直接報廢,因此氮偏析的控制對高氮不銹鋼制備而言至關重要。不同壓力和不同初始氮含量下21.5Cr5Mn1.5Ni0.25N含氮雙相鋼中氮偏析導致氮氣孔的形貌如圖2-50所示,其中D1、D3和D5分別在0.04MPa、0.1MPa和0.13MPa下完成凝固,不同氮質量分數的D2(0.25%N)、D3(0.26%N)和D4(0.29%N)均在0.1MPa下凝固。





聯系方式.jpg